100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary - Advanced Econometrics (MSc Econometrics and Operations Research)

Rating
-
Sold
-
Pages
32
Uploaded on
13-12-2024
Written in
2024/2025

Summary Advanced Econometrics of the Master Econometrics and Operational Research at the VU. This summary includes all course content that has been discussed in the lectures and tutorials. The summary contains the following topics: linear regression, non linear models, stationarity, forecasting, value at risk, impulse response functions, fading memory, ergodicity, bounded moments, DGPs, multivariate filters, extremum estimators, uniform convergence, equicontinuity, identifiable uniqueness, misspecification, asymptotic normality, pseudo true parameters, ensemble methods, structural modeling, dynamic pricing, instrumental variables.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 13, 2024
Number of pages
32
Written in
2024/2025
Type
Summary

Subjects

Content preview

Summary

Joya da Silva Patricio Gomes

Advanced Econometrics

Email:

Student Number: 2806884




December 13, 2024

,Contents

Week 1 1
Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Recap: Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Recap: Linear AR(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Difficulties with Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Difficulties with Nonlinear Models continued . . . . . . . . . . . . . . . . . . 4
Stationarity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Week 2 7
Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Challenges in Analyzing Complex Models . . . . . . . . . . . . . . . . . . . 7
Probabilistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Value-at-Risk (VaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Impulse Response Functions (IRFs) . . . . . . . . . . . . . . . . . . . . . . . . 9
Dynamic Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Stochastic Properties of Dynamic Probability Models . . . . . . . . . . . . . 10
Stationarity, Dependence and Ergodicity . . . . . . . . . . . . . . . . . . . . . 10
Stability of Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Fading Memory and Dependence Structures . . . . . . . . . . . . . . . . . . 11
Bounded Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Week 3 12
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Filters and Data-Generating Processes (DGPs) . . . . . . . . . . . . . . . . . 12
Invertibility of Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Invertibility in Perturbed Dynamic Equations . . . . . . . . . . . . . . . . . . 14
Multivariate Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Extremum Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Criterion Function Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Z-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Existence and Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Week 4 18
Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2

,Advanced Econometrics Summary

Consistency of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Stochastic Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Identifiable Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Strong consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Consistency under Misspecification . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Asymptotic Normality of Estimators . . . . . . . . . . . . . . . . . . . . . . . 21
Extremum Estimators and Asymptotic Normality . . . . . . . . . . . . . . . 21
Well-Behaved Functions and Asymptotic Normality . . . . . . . . . . . . . . 22
Approximate Statistical Inference Using Asymptotic Normality . . . . . . . 22
Estimating the Asymptotic Variance . . . . . . . . . . . . . . . . . . . . . . . 23

Week 5 23
Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Method Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Least Squares and the Weighted L2-Norm . . . . . . . . . . . . . . . . . . . . 24
MLE and Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . 24
Specification Tests with Pseudo-True Parameters . . . . . . . . . . . . . . . . 25
Estimator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Model Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Week 6 26
Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Structural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Dynamic Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The Importance of Exogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Instrumental Variables and A/B Testing . . . . . . . . . . . . . . . . . . . . . 29




CONTENTS 3

, Week 1

Chapter 1
Recap: Simple Linear Regression
The Linear Regression Model
The linear regression model is specified as:

yt = α + βxt + ϵt , (1)

where:

• yt is the dependent variable (also known as the endogenous variable or target).

• xt is the independent variable (also known as the exogenous variable or predictor).

• α is the intercept term.

• β is the slope parameter, which measures the effect of a one-unit change in xt on yt .

• ϵt is the error term, representing unexplained variability.


Assumptions in Linear Regression
For the Ordinary Least Squares (OLS) method to provide meaningful estimates, certain
assumptions must be satisfied:

• Linearity: The relationship between yt and xt is linear.

• Exogeneity: The error term is uncorrelated with the regressors, i.e., E(ϵt | xt ) = 0.

• Homoscedasticity: The variance of the error term is constant, i.e., Var (ϵt | xt ) = σ2 .

• No Perfect Multicollinearity: The regressors are not perfectly collinear.

• Independence: The observations are independently and identically distributed (i.i.d).


Ordinary Least Squares (OLS) Estimation
The OLS method estimates the parameters α and β by minimizing the sum of squared
residuals:
T
(α̂, β̂) = arg min ∑ (yt − α − βxt )2 . (2)
α,β t=1


1

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
joyadasilva Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
1 year
Number of followers
0
Documents
4
Last sold
2 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions