100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

samenvatting hoofdstuk 1 - Functies en hun afgeleiden

Rating
-
Sold
3
Pages
7
Uploaded on
31-03-2020
Written in
2019/2020

Samenvatting van hoofdstuk 1 met simpele ezelsbruggetjes

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 1
Uploaded on
March 31, 2020
Number of pages
7
Written in
2019/2020
Type
Summary

Subjects

Content preview

Hoofdstuk 1 “Functies en hun afgeleiden”



Functies

Lineaire functies

y = f(x) = a x + b

Hierbij snijdt de lijn de y-as in (0, b) dus als b 0 is dan is het snijpunt met de y-as (0,0) dit geeft een lijn
door de oorsprong.

Als a 0 is dan hangt y/f(x) niet af van de x-waardes en is dus dan ook een constante functie
(horizontale lijn) op de hoogte b  y = b

a bepaalt tevens de helling (hoe snel de lijn stijgt/daalt als deze 1x naar rechts verschuift)

y 2− y 1
a=
x 2−x 1




Machten en machtfuncties (ook wortels dus)

f(x) = c xp

c en p zijn positief  f(x) is stijgend en f(0) = 0

als c positief is en p negatief  f(x) is dalend en f(0) is oneindig

 Rekenregels machten

m
- n m
a =√ am =( √n a)
n



1
- a− p=
ap

- (ab) p =a p b p

- (a p)q =a pq

- a p a q=a p+ q

, Polynomen

Onder de polynomen (veeltermen) vallen ook lineaire functies, die eerder al behandeld zijn.

Een algemene vorm van polynomen is f(x) = a 0 xn + a1 xn-1 + … + an-1 x + an

N is de graad en a is de coëfficiënt van het polynoom

graad Naam functie
1 Lineaire functie
2 Kwadratische functie (parabool)


 Eigenschappen van kwadratische polynomen
- a > 0  f(x) dalparabool met minimum x= -b/2a en f(x) gaat richting oneindig als x naar
negatief/positief oneindig gaat.
Ezelsbruggetje:
- a < 0  f(x) is een bergparabool met maximum
bij x=-b/2a en f(x) gaat richting negatief oneindig - als a positief is dan maakt de functie
als x naar negatief/positief oneindig gaat. een blije smiley 😊
- De nulpunten zijn te berekenen door
- als a negatief is dan maakt de functie
−b ± √ b2−4 ac een boze smiley ☹
x=
2a



Rationele functies

Dit zijn quotiënten van twee polynomen

a0 x n +a 1 x n−1+ ...+ an−1 x n + an
f(x) = f ( x )= m m−1 m
b 0 x +b 1 x + ...+ bm−1 x + bm


Inverse functies

Een inverse functie geeft x als y wordt ingevuld (het is dus eigenlijk een omgebouwde functie die niet
y= … laat zien, maar x= …)

Als we y = a x + b als voorbeeld nemen en deze stapsgewijs ombouwen:

-b aan beide kanten geeft

y–b=ax

delen door a aan beide kanten geeft

y−b
=x
a
Free
Get access to the full document:
Download

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
timodiederik
5.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
timodiederik Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
22
Member since
5 year
Number of followers
19
Documents
28
Last sold
1 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions