100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution manual electromagnetics engineering 8th edition

Rating
5.0
(2)
Sold
-
Pages
319
Grade
A+
Uploaded on
03-12-2024
Written in
2024/2025

Solution manual electromagnetics engineering 8th edition

Institution
Electromagnetics Engineering 8th E
Course
Electromagnetics engineering 8th e











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Electromagnetics engineering 8th e
Course
Electromagnetics engineering 8th e

Document information

Uploaded on
December 3, 2024
Number of pages
319
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • electromagnetics

Content preview

CHAPTERff 1

1.1. Givenf thef vectorsf Mf =f −10axf +f4ayf −f8azf andf Nf =f 8axf +f7ayf −f2az,f find:
a) af unitf vectorf inf thef directionf off −Mf+f2N.
−Mf+f2Nf =f 10axf −f4ayf +f8azf +f16axf +f14ayf −f4azf =f (26,f10,f4)
Thus
(26,f10,f4)
a f =f =f (0.92,f0.36,f0.14)
|(26,f10,f4)|

b) thef magnitudef off 5axf+fNf−f3M:
(5,f0,f0)f+f(8,f7,f−2)f−f(−30,f12,f−24)f =f (43,f−5,f22),f andf |(43,f−5,f22)|f =f 48.6.
c)f |M||2N|(Mf+fN):
|(−10,f4,f−8)||(16,f14,f−4)|(−2,f11,f−10)f =f (13.4)(21.6)(−2,f11,f−10)
=f (−580.5,f3193,f−2902)

1.2. VectorfAfextendsffromftheforiginftof(1,2,3)fandfvectorfBffromftheforiginftof(2,3,-2).
a) Findf thef unitf vectorf inf thef directionf off (Af−fB):f First

Af−fBf =f (axf+f2ayf +f3az)f−f(2axf+f3ayf −f2az)f =f (−axf −fayf +f5az)

w√ hoseff magnitudeff isff |Aff−ffB|fff=fff[(−axf −fayf +f5az )f·f(−axf −fayf +f5az )]1/2ff =fff 1f+f1f+f25fff=
3f 3f =f5.20.f Thef unitf vectorf isf therefore

aABf =f(−axf−fayf +f5az)/5.20

b) findf thef unitf vectorf inf thef directionf off thef linef extendingf fromf thef originf tof thef midpointf off theflin
ef joiningf thef endsf off Af andf B:
Thef midpointf isf locatedf at

Pmpf =f [1f+f(2f−f1)/2,f 2f+f(3f−f2)/2,f 3f+f(−2f−f3)/2)]f =f (1.5,f2.5,f0.5)

Thef unitf vectorf isf then
f (1.5axf+f2.5ayf+f0.5az)f +f2.5a +f0.5a )/2.96
a = =f(1.5a
x y z
p
f
mp
(1.5)2f +f(2.5)2f +f(0.5)2

1.3. ThefvectorffromftheforiginftofthefpointfAfisfgivenfasf(6,f2,f4), — fand
− fthefunitfvectorfdirectedffromfthef or
iginf towardf pointf Bf isf (2,f 2,f1)/3.−
fIff pointsf Af andf Bf aref tenf unitsf apart,f findf thef coordinatesfoff pointf B.

Withf Af =f (6,f−2,f−4)f andf Bf =f 13fBf (2,f−2,f1),f wef usef thef factf thatf |Bf−fA|f =f 10,f or
2 2 1
|(6 − 3fB)ax − (2 − 3fB)ay − (4f+f 3fB)azf = | f 10
Expanding,4f obtain
36f−f8Bf+f fB2f+f4f−f 8fBf+f 4fB2f+f16f+f 8fBf+f 1fB2f=f100
9 3 9 √ 3 9
orf B2f−f8Bf−f44f=f0.f Thusf Bf=f 8±f 64−176
2 f =f11.75f (takingf positivef option)f andf so
2 2 1
B
=f (11.75)axf −f (11.75)ayf +f (11.75)azf =f 7.83axf −f7.83ayf +f3.92az
3f 3f 3f

1

,1.4. Affcircle,ffcenteredffatffthefforiginffwithffaffradiusffofff2ffunits,ffliesffinfftheffxyffplane.fffDetermine √theffunit
vectorf inf rectangularf componentsf thatf liesf inf thef xyf plane,f isf tangentf tof thef circlef atf ( −
3,f1,f0),f
andf isf inf thef generalf directionf off increasingf valuesf off y:
Affunitffvectorfftangentfftoffthisffcircleffinfftheffgeneralffincreasingf yf directionffisfftf =f −aφ .ff Its√xffand
yf componentsf aref txf =f −aφf ·faxf =f sinfφ,f andf tyf =f −aφf ·fayf =f −√
fcosfφ. f Atf the f point f (− 3,f1),
φf=f 150 ,ffandf sof tf =f sinf150 axf −fcosf150 ayff=f 0.5(axf +
◦ ◦ ◦
3ay ).

1.5. AfvectorffieldfisfspecifiedfasfGf=f24xyaxf+f12(x2f+f2)ayf+f18z2az.ffGivenfftwoffpoints,ffP(1,f2,f−1)fandf Q(
−2,f1,f3),f find:
a)f Gf atf P: f G(1,f2,f−1)f =f (48,f36,f18)
b) af unitf vectorf inf thef directionf off Gf atf Q:f G(−2,f1,f3)f =f (−48,f72,f162),f so
f (−48,f72,f162)f
a = =f (f —
0f 26
f .
f 0f 39f 0f 88)
,ff. ,f .
G
|(−48,f72,f162)|

c) af unitf vectorf directedf fromf Qf towardf P:
f Pf−fQff
(3 1f 4) f
a
QP = = ,√
f−f ,f
=f (0.59,f0.20,f−0.78)
|Pf −f Q| 26

d) thef equationf off thef surfacef onf whichf|G|f =f 60:f Wefwritef 60f =f |(24xy,f12(x2f +f 2),f18z2)|,forf10f =f|
(4xy,f2x2f+f4,f3z2)|,f sof thef equationf is

100f=f16x2y2f+f4x4f+f16x2f+f16f+f9z4


1.6. Findf thef acutef anglef betweenf thef twof vectorsf Af =f 2axf+fayf +f3azf andf Bf =f ax −
3ayf+f2azfbyfusingfthef definitionf of:
√ √
a) theffdotffproduct√ 2f −f3f +f6ff=ff5ff=ffABfcosfθ,ffwhereffAf =ff 22ff+f12ff+f32ff =ff 14,
:ff First,ffAf ·f Bff=f√
andf wherefBf= 12f +f32f +f22f = 14.f Thereforef cosfθf =f 5/14,f sof thatf θf =f 69.1◦.
b) thef crossf product:f Beginf with
ax ay az
A×B = Ø 2 1 3 Ø =f11 a xf− ayf− 7az
Øf 1 −3 2f Ø

√ ¢f √ √
and
find f thenf |A
f θf=fsin−
1 f× B
√|ff=f 11=f 69.1
°171/14
2ff+f12◦+f72ff=f 171.ffSof now,f withf |Af×fB|f =f ABfsinfθf=f 171,
ff




1.7. Givenf thef vectorf fieldf Ef =f 4zy2fcosf2xaxf +f2zyfsinf2xayf +fy2fsinf2xazf forf thef regionf xf,ff y|f ,ff and
|f |f |ff z |f |
lessf thanf 2,f find:
a) thef surfacesf onf whichf Eyf=f 0.f Withf Eyf =f 2zyfsinf2xf =f 0,f thef surfacesf aref 1)f thef planef zf =f 0,fwithf|
x|f<f2,f |y|f<f2;f 2)fthefplanefyf=f0,f withf|x|f<f2,f |z|f<f2;f 3)f thefplanefxf=f0,f withf|y|f<f2,
|z|f<f2;f 4)f thef planef xf=fπ/2,f withf |y|f <f2,f |z|f <f2.
b) thef regionf inf whichf Eyff=f Ez:f Thisf occursf whenf 2zyfsinf2xf =f y2fsinf2x,f orf onf thef planef 2zf =f y,fwithf
|x|f <f2,f |y|f <f2,f |z|f <f1.
c) thef regionf inf whichf Ef =f 0:f Wef wouldf havef Exff=f Eyff =f Ezff =f 0,f orf zy2fcosf2xf =f zyfsinf2xf =
y2fsinf2xf =f 0.f Thisf conditionf isf metf onf thef planef yf =f 0,f withf |x|f <f 2,f |z|f <f 2.

2

, 1.8. Demonstratefthefambiguityfthatfresultsfwhenfthefcrossfproductfisfusedftof findfthef anglefbetweenftwofv
ectorsfbyffindingfthefanglefbetweenfAf=f3axf2ayf+f4a— zfandfBf=f2axf+fayf2az.fDoesfthisfambiguity
− f existf

whenf thef dotf productf isf used?
Wef usef thef relationf Af ×f Bf =f |A||B|fsinfθn.f Withf thef givenf vectorsf wef find
∑f ∏
√f 2ayf +fazf √ √f


Af×fBf=f14ayf+f7azf =f7f 5 √ 4f+f1f+f4f sinfθfn
| 5 }= 9f+f4f+f16
{z
±n
wheref nf isf identifiedf asf shown;f wef seef thatf nf canf bef positivef orf negative,f asf sinfθf canf be
positivef orf negative.fff Thisf apparentf signf ambiguityf isf notf thef realf problem,f however,f asf we
reallyffwa√ ntfffth√
effm√
agnitudeffoffftheffangleffanyway.fffChoosingfftheffpositiveffsign,ffweffareffleftffwith
sinfθf =f 7f f 5/(f f 29f f 9)f =f 0.969.f Twoffvaluesf off θf (75.7◦f andff104.3◦)f satisfyf thisffequation,f and
hencefthefrealfambiguity.

Inffusingfftheffd√ otffproduct,ffwefffindffAf ·f Bff=ff6f −f 2f −f 8ff=ff−4ff=ff|A||B|fcosfθff=ff3 29fcosfθ,ffor
cosfθf =f −4/(3f f 29)f =f −0.248f ⇒f θf =f −75.7◦.f Again,f thef minusf signffisf notf important,f asf we
caref onlyf aboutf thef anglef magnitude.f Thef mainf pointf isf thatf onlyf onef θf valuef resultsf whenfusin
gf thef dotf product,f sof nof ambiguity.

1.9. Af fieldf isf givenf as
Gf =
25f(x (xax +fyay)
2f +fy2)

Find:
a) afunitfvectorfinfthefdirectionfoffGfatfP(3,f4,f−2):fHavefGpf=f25/(9f+f16)f×(3,f4,f0)f=f3axf+f4ay,fandf |
Gp|f =f5.f Thusf aGf =f(0.6,f0.8,f0).
b) thef anglefbetweenf Gfandfaxf atfP: f f Thef anglef isf foundf throughf aGf ·f axf =f cosfθ.f Sof cosfθf =f(0.6,f0.8
,f0)f·f(1,f0,f0)f=f0.6.f Thusf θf=f53◦.
c) thef valuef off thef followingf doublef integralf onf thef planef yf=f7:
Zf 4fZf 2f
G · aydzdx
0 0

Zf 4f Zf 2ff Zf 4f Zf 2ff Zf 4ff
25 ffffff 25 ffff 350f
(fxafffx+ y fy)f ·a y dzdx =f × 7 dzdx = dx
ffffff
a
0 x +f49f 0 x +f49f
f
0 0 x +fy
2f 2
0
2f 2f
∑ µf ∂f ∏f
1f 4f
=f 350f×ff tan− f 1
−f0 =f 26
7 7


1.10. Byfexpressingfdiagonalsfasfvectorsfandfusingfthefdefinitionfoffthefdotfproduct,ffindfthefsmallerfanglefbet
weenfanyftwofdiagonalsfoffafcube,fwherefeachfdiagonalfconnectsfdiametricallyfoppositefcorners,fandf pa
ssesf throughf thef centerf off thef cube:
Assumingffaff sidefflength,ff b,ff twoff diagonalffvectorsffwouldffbeff Aff =f√ b(axff+ √fayff+f az )ff andffBff =
b(axf −fayf +faz ).ffNowf usef Af·fBf =f |A||B|fcosfθ,f orf b2 (1f−f1f+f1)f =f (ffff3b)(ffff3b)fcosfθff ⇒fffcosfθf =
1/3f ⇒f θf=f70.53◦.f Thisf resultf (inf magnitude)f isf thef samef forf anyf twof diagonalf vectors.




3

, 1.11.f Givenf thef pointsf M(0.1,f−0.2,f−0.1),f N(−0.2,f0.1,f0.3),f andf P(0.4,f0,f0.1),f find:
a)f thef vectorf RMNf:f RMNf =f (−0.2,f0.1,f0.3)f−f(0.1,f−0.2,f−0.1)f =f (−0.3,f0.3,f0.4).
b)ff thef dotf productf RMNf ·fRMPf:ff RMPf =f(0.4,f0,f0.1)f−f(0.1,f−0.2,f−0.1)f =f(0.3,f0.2,f0.2).ffRMNf ·
RMPf =f (−0.3,f0.3,f0.4)f·f(0.3,f0.2,f0.2)f =f −0.09f+f0.06f+f0.08f =f 0.05.
c) thef scalarf projectionf off RMNff onf RMPf:
(0.3,f0.2,f0.2) 0.05
RMNf ·faRMPf =f (−0.3,f0.3,f0.4)f·f √ =f √ =f 0.12
0.09f+f0.04f+f0.04f 0.17f

d) thef anglef betweenf RMNf andf RMPf: ∂f
µ ∂ µ
−1f fRMNf ·f RMPff 0.05 =f78◦
θ =f cos −1f
M
|RMNf ||RMPf | √ √
=f0.34 0.17
cos
1.12. Writef anf expressionf inf rectangularf componentsf forf thef vectorf thatf extendsf fromf (x1,fy1,fz1)f tof(x2,fy2,f
z2)f andf determinef thef magnitudef off thisf vector.
Thef twof pointsf canf bef writtenf asf vectorsf fromf thef origin:

A1f =f x1axf +f y1ayf +f z1az and

A2f =f x2axf +f y2ayf +f z2azfThefde

siredfvectorfwillfnowfbefthefdifference:

A12f=fA2f−fA1f=f(x2f−fx1)axf+f(y2f−fy1)ayf+f(z2f−fz1)az

whosef magnitudef is
p £ §1/2
|Afff |f =f
12 A
12 ·12fA =f 2(xf −1fxf )2f+f(y2f −fyf 1)2f+f(zf −2fzf )2 1


1.13. a)f Findf thef vectorf componentf off Ff =f (10,f−6,f5)f thatf isf parallelf tof Gf =f (0.1,f0.2,f0.3):
Ff ·f G (10,f−6,f5)f ·f (0.1,f0.2,f0.3)
F =f G f =f (0.1,f0.2,f0.3)f =f (0.93,f1.86,f2.79)
||G
|G|2 0.01f+f0.04f +f0.09

b) Findf thef vectorf componentf off Ff thatf isf perpendicularf tof G:

FpGf =f Ff −f F||Gf =f (10,f−6,f5)f −f (0.93,f1.86,f2.79)f =f (9.07,f−7.86,f2.21)

c) Findfthef vectorf componentf off Gfthatfisf perpendicularftof F:
Gf·fF 1.3
G =fGf−fG =fGf−f Ff=f(0.1,f0.2,f0.3)f− (10,f−6,f5)f =f (0.02,f0.25,f0.26)
pF ||F
|F|2 100f+f36f+f25



4

Reviews from verified buyers

Showing all 2 reviews
11 months ago

1 year ago

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
GUARANTEEDSTORE Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
211
Member since
1 year
Number of followers
45
Documents
7879
Last sold
2 days ago
EXCELLENT HOMEWORK HELP ,

EXCELLENT HOMEWORK HELP ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A Hello ,I am about quality, The documents herein quarantees an A+ for exams, essay, class discussion, term papers , quizlets and Q &amp; A assigments, Do not hesistate to make your purchase. Investing in your education is a life invesment, ,I 'm a honest and friendly person,For more info you can contact me at Let study together,All THE BEST

4.8

3182 reviews

5
2615
4
410
3
108
2
28
1
21

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions