100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary - Genetics in Neuroscience (AM_1005) (Vrije Universiteit Amsterdam)

Rating
-
Sold
-
Pages
64
Uploaded on
28-11-2024
Written in
2024/2025

Summary of the course Genetics in Neuroscience given in Biomedical Sciences and Neurosciences master at Vrije Universiteit Amsterdam.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 28, 2024
Number of pages
64
Written in
2024/2025
Type
Summary

Subjects

Content preview

Genetics in neuroscience
Contents
Lecture 1: Introduction to genetics.........................................................................................................2
Lecture 2: Genetic variation and genome-wide association (GWAS)......................................................8
Lecture 3: Interpreting GWAS and biological annotation......................................................................18
Lecture 4: Genetic architecture of traits and diseases..........................................................................28
Guest lecture: Genetic risk prediction, consumer DNA testing, the ‘gay GWAS’...................................33
Lecture 5: Aggregating and interpreting genetic associations..............................................................36
Paper 1: Basic genetics.........................................................................................................................43
Paper 2: Genome-wide association studies..........................................................................................44
Paper 3: Genome-scale neurogenetics: methodology and meaning....................................................45
Paper 4: Benefits and Limitations of Genome-Wide Association Studies.............................................46
Paper 5: Genome-Wide Association Studies.........................................................................................48
Paper 6: Data quality control in genetic case-control association studies............................................49
Paper 7: 10 Years of GWAS Discovery: Biology, Function, and Translation............................................51
Paper 8: Functional mapping and annotation of genetic associations with FUMA...............................52
Paper 9: Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric
PolygenicSignal.....................................................................................................................................54
Paper 10: Pitfalls of predicting complex traits from SNPs.....................................................................55
Paper 11: Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior
..............................................................................................................................................................57
Paper 12: Analysis of shared heritability in common disorders of the brain.........................................58
Paper 13: Unraveling the genetic architecture of major depressive disorder: merits and pitfalls of the
approaches used in genome-wide association studies.........................................................................60
Paper 14: The statistical properties of gene-set analysis......................................................................61
Paper 15: An historical framework for psychiatric nosology.................................................................63

,Lecture 1: Introduction to genetics
Learning goals:

 Understand heritability and how it is estimated
 See the connections between heritability studies, gene identification, and functional
experiments
 Understand the processes underlying (Mendelian) inheritance
 Identify the main challenges in genetic research of neuropsychiatric traits

Rapid changes are made in human genetics in the past decades, such as new technologies, novel
methods, large scale collaborations and novel disease insights.

Challenges in Determining Genetic vs. Environmental Influence

 Determining the influence of genetics (nature) vs. environment (nurture) is complex.
 Twin studies help identify the extent of each influence by comparing:
o Monozygotic (MZ) twins:
 Share 100% of their genes (G).
 Share 100% of their common/family environment (C).
 Share 0% of unique environment (E).
 Formula for MZ similarity
 rMZ = 1*G + 1*C
o Dizygotic (DZ) twins:
 Share 50% of their genes (G) on average.
 Share 100% of their common/family environment (C).
 Share 0% of unique environment (E).
 Formula for DZ similarity
 rDZ = 0.5*G + 1*C

Key Observations in Twin Studies

 Genetic influence only: MZ twins would be identical for a trait, while DZ twins would be 50%
similar.
 Environmental influence only: One MZ twin might exhibit a trait while the other does not.
 Correlation measurement:
o 1.0 indicates 100% correlation or similarity.

Estimating Genetic, Common, and Unique Environmental Contributions

 Formulas for estimating contributions of genetics vs. environment:
o Genetic influence (G): G = 2(rMZ - rDZ)
o Unique environment (E): E = 1 – rMZ
o Common environment (C): C = 1 - G - E

Interpreting Results

 100% heritable: If similarity in MZ twins is twice as high as in DZ twins.
o Example: rMZ = 1.0, rDZ = 0.5
 100% common environment: If MZ and DZ twins show equal similarity.
o Example: rMZ = rDZ = 1.0

,  100% unique environment: No similarity between twins.
o Example: rMZ = rDZ = 0

Heritability

Heritability: The proportion of trait variance between individuals that is due to genetic variance.

 Explains why genetically related individuals show similar traits (phenotype).
 Suggests that variations in genes underlie trait differences between individuals

Key Questions:

 Does heritability mean destiny?
o High heritability does not guarantee an outcome, as it is an expression of probability.
 What does it mean if a phenotype is 100% heritable?
o It suggests all variance in the trait is due to genetic differences in the population.
 If a phenotype is 0% heritable, does it mean genes have no influence?
o No, it just means environmental factors are the main cause of variation in that
specific context.




Factors Influencing Heritability

 Trait Variance:
o Normally distributed across populations, with genetic variance among individuals.
o Family members often cluster closer together within the distribution.
 Heritability is Context- and Population-Specific:
o Heritability estimates vary depending on the environment and population studied.

Genetic Influence on Traits

 General Estimate: Many traits show ~50% heritability, though this varies widely.
 Alleles and Disease Risk:
o Each allele can contribute a slightly higher risk of disease.
 In this case it follows an additive model of genetic influence, meaning traits
are not strictly dominant or recessive.
o An disease allele can also be either dominant or recessive

Twin studies

Studies conducted between 1900 and 2012 in twins

,  Collected sample size (N) and correlation (r) for both monozygotic (MZ) and dizygotic (DZ)
Twins
 Calculated
o h² (heritability) – genetic contribution.
o C² (common/family environment) – shared family influence.
o e² (unique environment) – individual environmental impact.
 Trait Classification:
o Used standardized categories:
 Actual trait (classified by ICF or ICD10).
 General trait category.
 Main trait domain.
 Traits Studied:
o Mostly easily measured traits (e.g., weight, height, blood pressure).
o Also included more complex traits, like neurological disorders.
 Key Findings from 50 Years of Twin Studies:
o All traits are heritable to some extent (average heritability around 50%).
o Influence of C² (common/family environment) is relatively small for most traits.
o Majority of traits fit a model where genetic variance is additive (individual alleles
contribute cumulatively to trait variance).

Genetic Basis of Heritable Traits:

 If a trait is heritable:
o Examine DNA to find causal genetic variants.
 Human genome details:
o 23 chromosomes with 3 billion base pairs (fully sequenced).
o Approximately 24,000 genes coding for polypeptide chains.

Genetic Similarities Across Species:

 Humans and mice share 87.5% of DNA.
 Humans and chimpanzees share 99% of DNA.
 Two individual humans share 99.9% of DNA
 The 0.1% base pair sites that differ...
o …are the genetic causes of phenotypic differences between unrelated individuals
o …explain (part of) why genetically similar individuals are more alike phenotypically

Types of Genetic Variations:

 Occur within genes (protein coding, regulatory regions, exonic, intronic – 5% of genome).
 Occur outside genes (regulatory regions or unknown functions – 95% of genome).

Effects of Genetic Variations:

 Harmless: Alters phenotype without negative impact.
 Harmful: Linked to diseases (e.g., diabetes, cancer, Huntington's disease).
 Helpful: Provides evolutionary advantages.
 Latent: Effects depend on other genes or environmental factors.
 Silent: No observable impact.

Types of Genetic Disorders:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
laralommers Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
19
Member since
1 year
Number of followers
0
Documents
25
Last sold
2 weeks ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions