100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Genome Technology

Rating
-
Sold
-
Pages
22
Uploaded on
23-11-2024
Written in
2024/2025

No need for summaries to be long and time consuming to study!

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 23, 2024
Number of pages
22
Written in
2024/2025
Type
Summary

Subjects

Content preview

Cloning Recombinant screening
Transformation of plasmids = very inefficient.
1. Construction of recombinant DNA Does host contain vector?
a. Cutting: restriction enzymes
b. Pasting: DNA ligase  Ampicillin resistance gene in vector
2. Transformation  ampicillin kills all bacteria that do not
a. Ca-buffer + heat shock contain vector
b. Electroporation
Does vector contain insert?
c. Bacteriophages (100% efficient)
d. RECOMBINANT SCREENING  Selection systems
3. Proliferation o β-galactosidase gene
4. Isolation complementation
o suppressor tRNA gene




Restriction enzymes (endonucleases) Selection systems
e.g. HaeIII: Hemophilus aegypiticus III basic idea of all selection systems: insert interrupts
certain gene (RE cuts vector at multiple cloning
recognize usually 4-8bp palindrome sequence
site, the MCS, which is the recognition seq of the
notice difference between blund end and 5’ enzyme)
overhanging ends (sticky ends) below
β-galactosidase gene complementation (E. coli)

 Plasmid with insert: white colonies
 Plasmid without insert: blue colonies
 Interrupted gene: LacZ
 No β-galactosidase made
 No blue product being formed out of X-gal
Some enzymes have same overhangs Suppressor tRNA
(compatibility) e.g. MboI & BamHI
 Plasmid with insert: red colony
Length of the fragments cut depends on the  Plasmid withour insert: white colony
recognition sequence  Interrupted gene: suppressor tRNA
 Special type of host that has nonsense
 The longer the seq, the more rare, the
mutation -> mutant protein ->
longer the fragments
accumulation -> red colour
 Cs and Gs are more rare than As and Ts
 CG as a sequence (CpG islands) is very rare When gene is not interrupted, suppressor
because this gets methylated for tRNA is made, recognizing the stopcodon
epigenetic purposes inserting an AA, continuing translation -> WT
protein is made -> white colour
DNA ligase
Problem: recircularization!

Solved by:

 Dephorylation of vector at 5’ end (ligation
only works fosfate-OH)
 Use two different restriction enzymes

, Different vectors Lytic pathway
 Classic plasmid (e.g. pUC19) – 0-10kB  Cos-sites are 12bp 5’overhangs that seal in
 Lambda phage host -> circular DNA
o Insertion – 0-10kB  Early transcription facilitated by host RNA
o Replacement – 9-23kB polymerase
 Cosmid/Fosmid – 30-45kB  Coat proteins and replication machinery
 P1 phage – 70-100kB made -> replication of DNA and formation
 PAC – 130-150kB of virus particles
 BAC – 150-300kB  You get one long strain of viral DNA that is
 YAC – up to 4 000kB cut at the cos-sites
 M13 – max 3kB (ss)  Cell lysis of host cell -> virus free
 Phagemid – >10kB (ss)
Lysogenic pathway
 Att gene has homologue in E.col
 Recombination
 Integration into host chromosome
= provirus

pUC19
In vitro packaging!
 LacZ gene with MCS: β-galactosidase
recombinant screening = usage of a protein mix that contains coat
 Ori = origin of replication -> can replicate proteins for packaging DNA with cos-sites into
independently of host genome, but needs phage particles
host replication machinery
 AmpR: ampicillin resistance gene



Replacement vectors
 You replace the non-essential part by an
insert
 Note that Lambda phage NEEDS to contain
a chromosome of 37-50bp, not more/less!
o Advantage: when non-essential
part is cut, but no insert, no phage
particles are made
Lambda phage o Disadvantage: insert has under
 = classic example of bacteriophage limit of about 10bp and upper
 100% efficient transformation! limit of about 23bp
 DNA is ds and linear in bacteriophage and  Typically used for genomic DNA (gDNA)
gets circular in host
Insertion vectors
 37-50kb genome
o Cos-sites!  You leave the non-essential part as it is
o Protein coding part and just insert the insert
o Non-essential part with att gene*  You have to use a vector that is relatively
 Place for insert! short (37-40bp) -> 10kb space for insert
o DNA synsthesis and host lysis  Typically used for coding DNA (cDNA)
regulation part
 Lytic vs lysogenic pathway
 Replacement vs insertion vectors
$8.42
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
MatthiVD
4.0
(1)

Get to know the seller

Seller avatar
MatthiVD SJABI
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
6 year
Number of followers
4
Documents
2
Last sold
5 months ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions