First Course in Abstract
IIll IIll IIll
Algebra A 8th Edition by
IIll IIll IIll I I l l IIll
John B. Fraleigh
IIll IIl IIll IIll IIll
I I l l All Chapters Full Complete
IIl l IIll IIll
, CONTENTS
1. Sets and Relations 1
IIll IIll
I. Groups I I l l and I I l l Subgroups
2. Introduction and Examples 4 IIll IIll
3. Binary Operations 7
I I l l
4. Isomorphic Binary Structures I Il l I Il l 9
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
IIll I I l l
8. Generators and Cayley Digraphs IIll IIll IIll 24
II. Permutations, Cosets, and Direct Products IIll IIll IIll IIll
9. Groups of Permutations 26
I Il l IIll
10. Orbits, Cycles, and the Alternating Groups IIll IIll IIll IIll IIll
30
11. Cosets and the Theorem of Lagrange
IIll 34 IIll IIll I Il l IIll
12. Direct Products and Finitely Generated Abelian Groups 37
I I l l I I l l I I l l I I l l I I l l I I l l
13. Plane Isometries 42
IIll
III. Homomorphisms and Factor Groups I I l l II l l II ll
14. Homomorphisms 44
15. Factor Groups 49 IIll
16. Factor-Group Computations and Simple Groups 53 IIll I Il l IIll IIll
17. Group Action on a Set 58
IIll IIll IIll IIll
18. Applications of G-Sets to Counting 61 IIl IIll IIll IIll
IV. Rings I I l l and I I l l Fields
19. Rings and Fields 63
IIll IIll
20. Integral Domains 68 IIll
21. Fermat’s and Euler’s Theorems IIll 72 IIll IIll
22. The Field of Quotients of an Integral Domain
IIll IIll IIll IIll IIll IIll IIll 74
23. Rings of Polynomials 76
IIll IIll
24. Factorization of Polynomials over a Field 79 IIl IIl IIl IIll IIll
25. Noncommutative Examples 85 IIll
26. Ordered Rings and Fields 87 IIll IIll IIll
V. Ideals and Factor I I l l I I l l I I l l Rings
27. Homomorphisms and Factor Rings 89 IIll IIll IIll
28. Prime and Maximal Ideals 94
IIl IIll IIll
,29. Gröbner Bases for Ideals 99
IIll IIll IIll
, VI. Extension I I l l Fields
30. Introduction to Extension Fields 103 IIll IIll IIll
31. Vector Spaces 107 I I l l
32. Algebraic Extensions 111 I I l l
33. Geometric Constructions 115 IIl
34. Finite Fields 116 IIll
VII. Advanced Group Theory IIll IIll
35. Isomorphism Theorems 117 Il
36. Series of Groups 119
IIll IIll
37. Sylow Theorems 122 IIll
38. Applications of the Sylow Theory 124 IIll IIll IIll IIll
39. Free Abelian Groups 128
IIll IIll
40. Free Groups 130
IIll
41. Group Presentations 133
IIll
VIII. Groups I I l l in I I l l Topology
42. Simplicial Complexes and Homology GroupsIIll IIll IIll IIll 136
43. Computations of Homology Groups 138 IIll IIll IIll
44. More Homology Computations and Applications
IIll IIll IIll IIll 140
45. Homological Algebra 144 IIll
IX. Factorization
46. Unique Factorization Domains IIll148 IIll
47. Euclidean Domains 151 I I l l
48. Gaussian Integers and Multiplicative Norms
IIll IIll IIll IIll 154
X. Automorphisms I I l l and I I l l Galois I I l l Theory
49. Automorphisms of Fields 159 IIll IIll
50. The Isomorphism Extension Theorem
IIll IIll IIll 164
51. Splitting Fields 165 IIll
52. Separable Extensions 167 IIl
53. Totally Inseparable Extensions 171
IIll IIll
54. Galois Theory 173 I I l l
55. Illustrations of Galois Theory 176 Il IIl IIl
56. CyclotomicExtensions 183 Il
57. Insolvability of the Quintic 185 IIll IIll IIll
APPENDIX IIll I I l l Matrix IIll I I l l Algebra 187
iv