100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Methodologie en toegepaste biostatistiek 2

Rating
4.7
(3)
Sold
18
Pages
38
Uploaded on
18-02-2020
Written in
2019/2020

Volledige samenvatting, collegestof, aantekening, uitleg en oefenvragen voor het tweede tentamen (regressieanalyses) van de bachelor/pre-master methodologie en toegepaste biostatistiek. Met het leren van dit document is (ondervonden) een 9 te halen!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
February 18, 2020
Number of pages
38
Written in
2019/2020
Type
Summary

Subjects

Content preview

o Na afloop van de cursus is de student in staat met behulp van statistische
(regressie)technieken een antwoord te krijgen op
gezondheidswetenschappelijke vragen.
o De theoretische achtergrond bij de in de cursus behandelde statistische
technieken/modellen uitleggen;
o Uit de behandelde statistische technieken de best passende kiezen, gegeven
een onderzoeksvraag, het onderzoeksdesign en de gemeten variabelen;
o De resultaten van deze analyse(s) op juiste wijze kan interpreteren;
o Wanneer, waarom en hoe een Chi2-toets en bijbehorende associatiematen
o Kunnen berekenen en interpreteren van een OR, incl. BI;
o Opbouw van een logistisch model kunnen volgen
o Weten hoe je een determinant (ongeacht meetniveau) dient te analyseren met
een logistisch regressiemodel;
o Resultaten van een logistisch model uit kunnen leggen.

,HC 1 ANOVA en Lineaire Regressie
Regressie: universele oplossing voor (toetsings-)problemen.
ANOVA: vergelijking van meer dan 2 groepen
Correlatie: verband tussen twee variabelen

Determinant =
onafhankelijke variabele
X-variabele
X-as

Uitkomst =
afhankelijke variabele
Y-variabele
Y-as

Lineaire Regressie
Schatten van een lineair verband.
Onafhankelijke variabele (determinant):
alle meetniveau’s: dichotoom (t-toets), categoriaal (dummy = ANOVA), interval/ratio (correlatie)

Afhankelijke variabele (uitkomst):
minimaal interval meetniveau

Bivariate regressie = verband schatten tussen 2 variabelen X en Y
Y schatten als lineaire functie van X
Hoeveel neemt Y toe of af als X toeneemt?
Op basis van onafhankelijke X-variabele een voorspelling maken van Y-waarde.

Onmogelijkheiden van regressie
- geen antwoord op de waarom vraag, maar observeren van relatie
- theorie en eerder onderzoek moet leiden tot verklaring
- alleen verklaringen kunnen toetsen


Lineair verband
Voorbeeld: we willen de variantie Y verklaren met behulp
van X.
We maken een voorspelling van de gemiddelde bloeddruk
→ de lijn door de puntenwolk.

Bij X=0 Y = constante, of intercept, of a(lpha) of B0

Hoeveelheid voorspelde Y omhoog bij 1 eenheid X = de
richtingscoëfficiënt, slope, b(eta), of B1.

Met constante en ri.coefficient kun je voorspellingen Y doen met X.
d.m.v een regressievergelijking:
Ydakje is de voorspelde Y.
B0 = constante
B1 = coëfficiënt

,Constante te lezen onder unstandardized B(constant) en BMI (coëfficiënt).
P-waarde van constante p<0.05, zegt niks, want gaat over de constante, die zal vaak significant
verschillen van 0…
De toets is op basis van t-verdeling (zie t-waarde)

Richtingscoefficient heeft wel een hypothese! Als p<0.05 mogen we nulhypothese (geen verband)
afwijzen!

Er is altijd een voorspellingsfout, daarom dakje en niet Y. Waardes liggen om voorspelde lijn heen,
dus nooit werkelijke waarde, meer variatie.

Relatie tussen voorspelling en observatie
- voorspelde Y wijkt (bijna) altijd af van observatie.
- hebben dus te maken met (voorspellings)fout  het residu.




Verklaarde variantie

Total sum of squares = som v gekwadrateerde afwijkingen van
iedere observatie tot gemiddelde (kwadraatsom van de
variantie!). Gemiddelde Y^ = Y-
SSE = residual (variantie zonder kwadraat)

R2 = TSS – SSE / TSS = hoeveel is er verklaard?

SPSS output: model summary
Doel van regressie is de variantie in variabele te verklaren!
“Hoeveel van de variantie in bloeddruk wordt verklaard door BMI?”
Kijk bij R square → 0.183 = 18%

Adjusted R square houdt rekening met aantal determinanten.
Hoe meer variabelen, hoe meer variantie, maar levert het iets
op?

, In een bivariate lineaire regressieanalyse zijn R en Beta de
correlatiecoefficient tussen X en Y.

Dus: als BMI met 1 standaarddeviatie toeneemt, neemt
voorspelde bloeddruk met 0.427 standaarddeviaties toe.

Dit zegt iets over de spreiding rondom de voorspelde waarden. Het
kwadraat van de standaarddeviatie is de variantie.

Dit betekent dat de onzekerheid groter wordt bij toename BMI. Ook het BI
verandert bij verandering van BMI, dit kun je berekenen met

Constante +/- 1.96 * regressie coëfficiënt.

Total sum of squares
De meest eenvoudige voorspelling Y^=Y- (het gemiddelde).
Maar dat is een grote voorspellingsfout.
TSS =
Som van alle gekwadrateerde afwijkingen van iedere observatie (Y) tot het gemiddelde Y-, ook wel
kwadraat van de variantie.
Bovenste SPSS rij, vervolgens residu zonder kwadratering, onderaan alles opgeteld.

Ordinary least squares regression: voor elke observatie wordt kleinst gekwadrateerde afstand tot
regressielijn gezocht.

Sum of Squared Errors = betere voorspelling, obv ordinary least
squares regressielijn.
SSE =
Som van gekwadrateerde afstand tussen voorspelde en geobserveerde
waarde, lijkt op TSS!
In SPSS: Residual Sum of Squares.

TSS = bestaande variantie in uitkomst Y
Maar om te verklaren is voorspelling niet perfect, daarom SSE.
Hoeveel variantie hebben we verklaard?
$10.72
Get access to the full document:
Purchased by 18 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all 3 reviews
3 year ago

4 year ago

4 year ago

4.7

3 reviews

5
2
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LF8 Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
72
Member since
5 year
Number of followers
56
Documents
8
Last sold
2 months ago

3.5

13 reviews

5
3
4
4
3
4
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions