100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Complete Summary Data Science and Society

Rating
-
Sold
-
Pages
25
Uploaded on
02-11-2024
Written in
2024/2025

This summary consists of everything you need to know for the final exam of INFOMDSS. Good luck studying!

Institution
Course

Content preview

DATA SCIENCE AND SOCIETY

Complete summary (INFOMDSS-2024)




Hamdi, M. (Majdouline)

Utrecht University

, Contents
Part A ........................................................................................................................................ 3
Data Science Concepts............................................................................................................... 3
CRISP-DM and SEMMA Models.................................................................................................. 3
Case Studies on Data Science Applications and Challenges ................................................ 3
Containerization (Docker) ......................................................................................................... 3
Current Challenges in Containerization ................................................................................... 4
Important pictures: .................................................................................................................... 4

Part B: ....................................................................................................................................... 6
Data Science and Strategic Alignment .................................................................................... 6
Business Performance Management (BPM) Tools .................................................................. 6
Data Warehousing ...................................................................................................................... 6
Data Warehousing Process and Architecture .......................................................................... 7
Data Modeling.............................................................................................................................. 7
Key Takeaways and Challenges................................................................................................ 7
Data Integration Methods .......................................................................................................... 8
Data Formats for Integration .................................................................................................... 8
Remote Data Access ................................................................................................................... 8
API Examples for Data Access .................................................................................................. 8
SQL Basics ................................................................................................................................... 9
Graphical Data Modeling Interfaces ......................................................................................... 9
Learning Objectives .................................................................................................................... 9

Part C: ......................................................................................................................................10
Describing Univariate Data ...................................................................................................... 10
Describing Bivariate and Multivariate Data........................................................................... 12
Clustering objectives ................................................................................................................ 12
Data Quality and Integrity ....................................................................................................... 13
Visualization and Dashboards ................................................................................................. 14

Part D: ......................................................................................................................................15
Predictive Analytics Overview ................................................................................................. 15
Classification .............................................................................................................................. 15
Evaluation of Classifiers ........................................................................................................... 16




1

Written for

Institution
Study
Course

Document information

Uploaded on
November 2, 2024
File latest updated on
November 2, 2024
Number of pages
25
Written in
2024/2025
Type
Summary

Subjects

$9.68
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
mh4

Get to know the seller

Seller avatar
mh4 Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
1
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions