Spreadsheet Modeling And Decision Analysis A
Practical Introduction To Business Analytics
9th Edition by Cliff Ragsdale
all Chapter 1-15
,TABLE OF CONTENT X X
1. Introduction to Modeling and Decision Analysis.
X X X X X X
2. Introduction to Optimization and Linear Programming.
X X X X X X
3. Modeling and Solving LP Problems in a Spreadsheet.
X X X X X X X X
4. Sensitivity Analysis and the Simplex Method.
X X X X X X
5. Network Modeling.
X X
6. Integer Linear Programming.
X X X
7. Goal Programming and Multiple Objective Optimization.
X X X X X X
8. Nonlinear Programming & Evolutionary Optimization.
X X X X X
9. Regression Analysis.
X X
10. Data Mining.
X X
11. Time Series Forecasting.
X X X
12. Introduction to Simulation.
X X X
13. Queuing Theory.
X X
14. Decision Analysis.
X X
15. Project Management (Online)
X X X
,Answers are at the end of each chapter
X X X X X X X
chapterX1
IndicateX whetherXtheXstatementXisXtrueXorXfalse.
1. BecauseXtheyXsimplifyXreality,XmodelsXareXgenerallyXnotXhelpfulXinXexaminingXthingsXthatXwouldXbeXimpossibleX
toX doXinXreality.
a. True
b. False
2. TheXproliferationXofXpowerfulXPCsXandXtheXdevelopmentXofXeasy-to-
useXelectronicXspreadsheetsXhaveXmadeXtheXtoolsXofX businessXanalyticsXfarXmoreXpracticalXandXavailableXtoXaXmuchXlar
gerXaudience.
a. True
b. False
3. AXmathematicalXmodelXusesXmathematicalXrelationshipsXtoXdescribeXorXrepresentXanXobjectXorXdecisionXproblem.
a. True
b. False
4. InXspreadsheetXmodelingXofXaXproblem,XthereXisXnoXdirectXcorrespondenceXbetweenXmathematicalXequationXandXt
heX spreadsheet.
a. True
b. False
5. HumansXusuallyXdoXnotXmakeXerrorsXinXestimationXdueXtoXanchoringXandXframingXeffects.
a. True
b. False
6. GoodXdecisionsXalwaysXresultXinXgoodXoutcomes.
a. True
b. False
7. DefiningXaXproblemXwellXwillXoftenXmakeXitXmuchXeasierXtoXsolve.
a. True
b. False
8. OR/MSXspecialistsXdoXnotXdeliverXbusinessXvalue.
a. True
b. False
IndicateXtheXanswerXchoiceXthatXbestXcompletesXtheXstatementXorXanswersXtheXquestion.
, 9. IdentifyingXtheXrealXproblemsXfacedXbyXtheXdecisionXmaker
a. isXnotXimportantXsinceXtheXdecisionXmakerXhasXalreadyXdefinedXtheXproblem.
b. requiresXinsight,XsomeXimagination,XtimeXandXaXgoodXbitXofXdetectiveXwork.
c. firstXrequiresXaXwell-definedXproblemXstatement.
d. willXleadXtoXdevelopingXtheXbestXmodel.
10. BusinessXopportunitiesXcanXbeXviewedXandXformulatedXas
a. decisionXproblems.
b. analyticalXmodels.
c. empiricalXmodels.
d. testingXtools.
11. InXaXspreadsheet,XinputXcellsXcorrespondXconceptuallyXto
a. dependentX variables.
b. functions.
c. independentXvariables.
d. outputXcells.
12. SolutionsXtoXwhichXofXtheXfollowingXcategoriesX ofXmodelingXtechniquesXindicateXaXcourseXofXactionXtoXtheXdecisi
onX maker?
a. DescriptiveXmodels
b. PredictiveXmodels
c. PrescriptiveXmodels
d. PreventiveXmodels
13. AXfactorXthatXplaysXaXroleXinXdeterminingXwhetherXaXgoodXorXbadXoutcomeXoccursXisXcalled
a. luck.
b. intuition.
c. certainty.
d. predictability.
14. InXaXmodelXY=f(x1,Xx2),XYXisXcalled:
a. aXdependentXvariable.
b. anXindependentXvariable.
c. aXconfoundedXvariable.
d. aXconvolutedXvariable.
15. WhichXofXtheXfollowingXisXtheXtypeXofXmodelXusedXthroughoutXthisXtextbook?
a. MathematicalXmodel
b. MentalXmodel
c. PhysicalXmodel
d. VisualXmodel
16. TheXessenceXofXdecisionXanalysisXis:
CopyrightXCengageXLearning.XPoweredXbyXCogner PageX
o. 2