100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture Notes NLP - alles

Rating
-
Sold
-
Pages
18
Uploaded on
19-10-2024
Written in
2023/2024

All NLP lectures summarized. There was no book for this course, so this is all exam material

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 19, 2024
Number of pages
18
Written in
2023/2024
Type
Class notes
Professor(s)
Hartmut fitz
Contains
All classes

Subjects

Content preview

Lecture notes Natural Language Processing
Lecture 1
Why is language special?
- Language emerged in homo sapiens between 30.000–100.000 yrs ago
o Other intelligent species have communication, but language is uniquely human
o Human language conveys an unbounded number of meanings
- Every child can learn any of ~6000 languages that exist today during “critical period”
o Learning “mother tongue” takes no effort at all, compared to second language (SL)
- Transmission of knowledge; writing systems invented ~5.000 yrs ago

Important tools for NLP
- Finite-state automata (FSA)
o An abstract machine that can process sequences of symbols
o Consists of states and transitions
o Reads sequences of symbols, one at a time
o An automaton accepts a sequence of symbols if and only if it stops in one of the
predefined final states after processing the entire sequence
o A finite-state automaton is a five-tuple ⟨ Σ, S , q o , F , δ ⟩ where:
 Σ is a set of symbols – alphabet
 S is a finite set of states
 q 0 is the initial state
 F ⊆ S is the set of final states
 δ is the transition function
- Regular languages
o If Σ is an alphabet, then:
 The empty set Ø (= { }) and {ε} are regular languages (ε is the empty string)
 The set {x} is a regular language for every x ∈ Σ
 If A and B are regular languages, then so is their union A U B
 If A and B are regular languages, then so is their concatenation A • B
 If A is a regular language, then so is A* (“Kleene closure”) where
¿ i
A =U i ≥ 0 A and A0 = {ε}, A1 = A, Ai = A • ... • A
 Nothing else is a regular language
 If A is a regular language, then so is its complement ∑ ¿¿
 If A and B are regular languages, then so is their intersection A ∩ B




- Regular expressions

, o Can be used to represent regular languages, or (equivalently) finite-state automata
o A regex is a sequence of characters that defines a search pattern
o Cheat sheet: slide 40/41

Lecture 2
- Phonology - study of phonemes, the basic units of speech sounds, and
phonotactics
- Morphology – study words and the parts from which words are composed,
i.e., morphemes
- Pragmatics – studies the difference between literal and implied meaning.
E.g., “I feel like pizza today.”

FSAs can be used for testing if strings belong to a language or not (classification).
However, many natural language processing tasks require converting one string to another:




For these tasks we need rewrite systems – transducers (FST)

- If a transducer has to look ahead an unbounded distance in
order to correctly generate the output on the first decision –
nondeterministic.
- Unlike FSA, nondeterministic FST cannot always be converted
to a deterministic equivalent!
- A finite-state transducer FST is an FSA that can produce
output strings:
o FST → ⟨ Σ ,O , S , q0 , F , δ ⟩
 Σ is a set of input symbols (alphabet)
 O is the set of output symbols
 S is a set of states
 q 0 is the initial state
 F ⊆ S is the set of final states
 δ is a function form ( Σ ∪ { ε } ) × S into P¿
 Example transition rule
o ⟨ ⟨ a , q 0 ⟩ , ⟨ q1 , b ⟩ ⟩
o when reading symbol a in state q0, go into state q1 and write
b

Applications of FST in NLP
1. Tokenization
2. Stemming
3. Lemmatization
4. Morphological processing
- Tokenization

, o Turning a string, document or text into tokens (smaller chunks), e.g., sentences,
words, characters, or subwords. Sometimes also called “segmentation”
o Important first step in preprocessing of text for more complex applications (every
state-of-the-art NLP system uses tokenization to prepare input)
o Rules for tokenization can be created with regex + FST
o Sentence tokenization often based on punctuation.
 Does not always work as intended: “Wow!”, said Alice. “Wow! / “, said Alice.
o In English, words are often separated from each other by blanks (whitespace).
 But whitespace is not always sufficient for word tokenization: New York ->
New / York, but you want them together.
o Very hard for languages that for example do not have whitespaces like Thai,
Japanese, etc.
o Non-alphabetic languages use logograms (a.k.a. characters, glyphs) that correspond
to words or morphemes
 Use a weighted FST
 Each path has an
associated cost
 Find the path that
minimizes overall cost
 Costs can be learned
from data (annotated
corpora)
o Deciding problem: given a model and a
sequence of observations, what is the most likely state sequence in the model that
produces these observations?
 Viterbi algorithm provides a method for finding the most optimal path in the
least number of steps
 Always choose the shortest path to get somewhere (prune a path if it
has a higher cost than another path that is at the same time but with
a lower cost)
- Inflectional Morphology
o The morphology of a language defines how words are built up from smaller parts.
Morphemes are the smallest units that have some meaning in a language
o There are many productive patterns in language (but also many exceptions). It is
much more efficient in NLP to store these rules than all word forms. Rules are then
used to derive one form from another, or to decompose unknown words.
o Morphological rules are useful if we want to decompose words into subword units (in
for example the stem of the word -> stemming).
- Stemming
o cats = cat + s, walking = walk + ing
o Widely used - Porter algorithm
 Based on a series of cascaded rewrite rules implemented as an FST:
 ATIONAL→ATE (e.g., relational → relate)
 ING→ if and only if stem contains vowel (e.g., motoring → motor, but
not bring → br)
 Lexicon-free (no dictionary or vocabulary needs to be used)
- Lemmatization
$6.73
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
donjaschipper
4.0
(1)

Get to know the seller

Seller avatar
donjaschipper Radboud Universiteit Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
1 year
Number of followers
0
Documents
9
Last sold
6 months ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions