100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solutions for Chemical Engineering Computation with MATLAB® 2nd Edition by Yeo (All Chapters included)

Rating
-
Sold
1
Pages
218
Grade
A+
Uploaded on
17-10-2024
Written in
2024/2025

Complete Solutions Manual for Chemical Engineering Computation with MATLAB® 2nd Edition by Yeong Koo Yeo ; ISBN13: 9780367547820......There is no Solution for Ch 1. MATLAB Programs and Lab slides are included...1. Introduction to MATLAB® 2. Numerical Methods with MATLAB® 3. Physical Properties 4. Thermodynamics 5. Fluid Mechanics 6. Chemical Reaction Engineering 7. Mass Transfer 8. Heat Transfer 9. Process Control 10. Optimization 11. Computational Intelligence

Show more Read less
Institution
Computers
Course
Computers











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Computers
Course
Computers

Document information

Uploaded on
October 17, 2024
Number of pages
218
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

Chemical Engineering Computation
with MATLAB® 2nd Edition by
Yeong Koo Yeo


Complete Chapter Solutions Manual
are included (Ch 1 to 11)




** Immediate Download
** Swift Response
** All Chapters included
** MATLAB Programs
** Lecture Slides

,Table of Contents are given below



1. Introduction to MATLAB®

2. Numerical Methods with MATLAB®

3. Physical Properties

4. Thermodynamics

5. Fluid Mechanics

6. Chemical Reaction Engineering

7. Mass Transfer

8. Heat Transfer

9. Process Control

10. Optimization

11. Computational Intelligence

,Chapter 2 Numerical Methods with MATLAB

Linear Systems
2.1 In the photosynthesis reaction, water reacts with carbon dioxide to give glucose and oxygen. This
reaction can be expressed as
𝑥1 𝐶𝑂2 + 𝑥2 𝐻2 𝑂 → 𝑥3 𝑂2 + 𝑥4 𝐶6 𝐻12 𝑂6
Determine the values of coefficients 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4 to balance the equation. Is it possible to
determine these values? If not, under what conditions can the solutions be found?

2.1(Solution)
Carbon balance: 𝑥1 = 6𝑥4 , oxygen balance: 2𝑥1 + 𝑥2 = 2𝑥3 + 6𝑥4 , hydrogen balance: 2𝑥2 = 12𝑥4 .
Rearrangement of these equations gives
𝑥1
1 0 0 −6 𝑥 0
2
[2 1 −2 −6 ] [𝑥 ] = [0]
3
0 2 0 −12 𝑥 0
4
We can use the backslash operator to get the solution:

>> x = A\b
x=
0
0
0
0

The given equations can be rewritten as
𝑥1 − 6𝑥4 = 0, 𝑥2 − 6𝑥4 = 0, 𝑥3 − 6𝑥4 = 0 ⇒ 𝑥1 = 6𝑥4 , 𝑥2 = 6𝑥4 , 𝑥3 = 6𝑥4
Thus if we set 𝑥4 = 1, we have 𝑥1 = 𝑥2 = 𝑥3 = 6.

2.2 Four reactors are connected by pipes where directions of flow are depicted by means of arrows as
shown in Figure P2.218. The flow rate of the key component is given by the volumetric flow rate
𝑄 (𝑙𝑖𝑡𝑒𝑟/𝑠𝑒𝑐) multiplied by the concentration 𝐶 (𝑔/𝑙𝑖𝑡𝑒𝑟) of the component. The incoming flow rate is
assumed to be equal to the outgoing rate. Using the flow rates given below, calculate the concentration at
each reactor:
𝑄13 = 75 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐 , 𝑄24 = 20 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐 , 𝑄33 = 60 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐 ,
𝑄21 = 25 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐 , 𝑄32 = 45 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐 , 𝑄43 = 30 𝑙𝑖𝑡𝑒𝑟 ⁄𝑠𝑒𝑐




FIGURE P2.2

2.2(Solution)
Material balance for each reactor can be expressed as follows:
Reactor 1: 350 + 𝑄21 𝐶2 = 𝑄13 𝐶1 ⇒ 350 + 25𝐶2 = 75𝐶1 ⇒ 75𝐶1 − 25𝐶2 = 350
Reactor 2: 𝑄32 𝐶3 = 𝑄21 𝐶2 + 𝑄24 𝐶2 ⇒ 45𝐶3 = 25𝐶2 + 20𝐶2 ⇒ 45𝐶3 − 45𝐶2 = 0

, Reactor 3:
𝑄13 𝐶1 + 𝑄43 𝐶4 = 𝑄32 𝐶3 + 𝑄33 𝐶3 ⇒ 75𝐶1 + 30𝐶4 = 45𝐶3 + 60𝐶3 ⇒ 75𝐶1 + 30𝐶4 − 105𝐶3 = 0
Reactor 4: 150 + 𝑄24 𝐶2 = 𝑄43 𝐶4 ⇒ 150 + 20𝐶2 = 30𝐶4 ⇒ 30𝐶4 − 20𝐶2 = 150
These equations can be rearranged as
75𝐶1 − 25𝐶2 = 350, −45𝐶2 + 45𝐶3 = 0, 75𝐶1 − 105𝐶3 + 30𝐶4 = 0, −20𝐶2 + 30𝐶4 = 150
The following commands produce desired outputs:

>> A = [75 -25 0 0;0 -45 45 0;75 0 -105 30;0 -20 0 30]; b = [350 0 0 150]'; C = A\b
C=
7.4444
8.3333
8.3333
10.5556

2.3 Paraxylene, styrene, toluene and benzene are to be separated with the array of distillation columns
shown in Figure P2.3.19 Determine the molar flow rates (𝑘𝑔𝑚𝑜𝑙/𝑚𝑖𝑛) of 𝐷1 , 𝐷2 , 𝐵1 , and 𝐵2 .




FIGURE P2.3

2.3(Solution)
Material balance for each component is given by:
Xylene: 0.07𝐷1 + 0.18𝐵1 + 0.15𝐷2 + 0.24𝐵2 = 0.15 × 80 = 12
Styrene : 0.04𝐷1 + 0.24𝐵1 + 0.1𝐷2 + 0.65𝐵2 = 0.25 × 80 = 20
Toluene : 0.54𝐷1 + 0.42𝐵1 + 0.54𝐷2 + 0.1𝐵2 = 0.4 × 80 = 32
Benzene : 0.35𝐷1 + 0.16𝐵1 + 0.21𝐷2 + 0.01𝐵2 = 0.2 × 80 = 16
These equations can be rearranged as 𝐴𝑥 = 𝑏, which can be solved by using the backslash operator:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mizhouubcca Business Hub
View profile
Follow You need to be logged in order to follow users or courses
Sold
2425
Member since
2 year
Number of followers
359
Documents
1579
Last sold
1 hour ago

4.3

428 reviews

5
274
4
72
3
39
2
14
1
29

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions