Degree
Angle Measurement Units
Radians
1° = (⊼/180) rad
1 rad = (180/⊼) °
Graphs of Trigonometric
1° = 60'
Functions
1' = 60"
⊝ = [l / r] rad
3 terms a-d, a , a+d
Trigonometric Functions In an AP, 4 terms a−3d,a−d,a+d,a+3d
5 terms a−2d,a−d,a,a+d,a+2d
Sum of all Angles of regular polygon = [(n-2) * 180]
One angle of regular polygon = [(n-2) * 180] / n
(90±⊝)=>{Odd product ->Change}
{Even product -> no change}
Sin (-⊝)=-sin⊝
Trigonometric Ratios
Cos (-⊝)=cos⊝
formulae
Tan (-⊝)=-tan⊝
Sin (360n ± ⊝) = ± sin ⊝
Cos (360n ± ⊝) = cos ⊝
Tan (360n ± ⊝) = ± tan ⊝
Componendo & Dividendo If a/b=c/d, then (a-b)/(a+ b)= (c- d) / (c+ d)
Trigonometric
Ratios
Angle Measurement Units
Radians
1° = (⊼/180) rad
1 rad = (180/⊼) °
Graphs of Trigonometric
1° = 60'
Functions
1' = 60"
⊝ = [l / r] rad
3 terms a-d, a , a+d
Trigonometric Functions In an AP, 4 terms a−3d,a−d,a+d,a+3d
5 terms a−2d,a−d,a,a+d,a+2d
Sum of all Angles of regular polygon = [(n-2) * 180]
One angle of regular polygon = [(n-2) * 180] / n
(90±⊝)=>{Odd product ->Change}
{Even product -> no change}
Sin (-⊝)=-sin⊝
Trigonometric Ratios
Cos (-⊝)=cos⊝
formulae
Tan (-⊝)=-tan⊝
Sin (360n ± ⊝) = ± sin ⊝
Cos (360n ± ⊝) = cos ⊝
Tan (360n ± ⊝) = ± tan ⊝
Componendo & Dividendo If a/b=c/d, then (a-b)/(a+ b)= (c- d) / (c+ d)
Trigonometric
Ratios