100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Linear Optimisation Samenvatting | 15/20 EERSTE ZIT HIR

Rating
-
Sold
8
Pages
19
Uploaded on
03-10-2024
Written in
2024/2025

Deze samenvatting bevat alle leerstof uit de lessen Lineaire Optimalisatie, gegeven door Jeroen Belien aan de tweedejaars studenten HIR. Ik behaalde met deze samenvatting een 15/20 in mijn eerste zit. Ze is gebaseerd op notities uit de lessen, aangevuld met de powerpoints.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 3, 2024
Number of pages
19
Written in
2024/2025
Type
Summary

Subjects

Content preview

Lineaire Optimalisatie
0. Les 0: Inleiding

Wat is lineair programmeren? Het oplossen van een beslissingsprobleem: kies één
oplossing uit een (mogelijk oneindig) aantal opties. Houd rekening met een aantal
beperkingen t.g.v. een beperkte beschikbaarheid van hulpmiddelen (tijd, personeel, geld, ...).
Optimalisatie: zo optimaal (goed) mogelijk, volgens een gegeven criterium.


1. Les 1: Hoe formuleer je een LO probleem?

Om een LO probleem te formuleren moeten we ons probleem proberen vertalen naar een
wiskundig model. Daarbij stellen we een doelfunctie op die we moeten maximaliseren of
minimaliseren (bv de winst die max moet zijn of de kosten die min moeten zijn), in die functie
noemen we de variabelen de beslissingsvariabelen. We stellen verder ook beperkingen op
(constraints), dit zijn de voorwaarden waaraan ons probleem is onderworpen. Een mogelijke
beperking die we daarbij nog kunnen toevoegen is de niet-negativiteitsbeperking, deze legt
het teken van de variabelen vast op positief. Binnen de beperkingen zullen we coëfficiënten
toekennen aan de variabelen die we de technische coëfficiënten noemen, als we deze in de
doelfunctie doen dan spreken we van een doelfunctiecoëfficiënt. Ten slotte is de voorwaarde
waaraan een bepaalde beperking moet voldoen de rechterhand: bv 2𝑥𝑇 + 𝑥𝑆 ≤ 6, hierbij is 6
de rechterhand.

Schaduwprijs: de bijkomende waarde die één additionele eenheid van een van de variabele
zou creëren.

Een LO problem moet voldoen aan 3 assumpties:
- Zekerheid (Certainty): elke parameter is met zekerheid gekend, we moeten met
zekerheid kunnen zeggen of een voorwaarde voldaan is of niet. We veronderstellen
dus een deterministisch model.
- Deelbaarheid (Divisibility): beslissingsvariabelen kunnen elke factionele waarde
aannemen en zijn dus continu.
- Lineariteit (Linearity): de doelfunctie is een lineaire functie, alle beperkingen zijn
lineaire (on)gelijkheden (≤,≥ of =).

, 2. Les 2: Modelleren en Lindo

We formuleren een LO-probleem met 3 elementen: de doelfunctie, de beperkingen en de
tekenbeperkingen. Daarbij zijn 4 componenten:
- Parameters: inputs, gegevens/data.
- Variabelen: zaken die je kan kiezen.
- Beperkingen: beschrijft de limieten.
- Doel: maximaliseer winst, minimaliseer kosten.

Er zijn veel verschillende soorten LO-problemen die elks als voorbeelden in de les worden
behandeld (zie slides):
- Een dieetprobleem
- Een personeelsplanningprobleem
- Een investeringsprobleem
- Korte termijn financiële planning
- Mengproblemen
- Productieproces modellen
- Een snijprobleem
- Voorraadproblemen
- Meerdere perioden financiële planning
- Meerdere perioden personeelsplanningsprobleem
- Transportprobleem
- Toewijzingsprobleem
- Overslagprobleem

We nemen een voorbeeld (hier een personeelsplanning probleem):

, Verder zien we ook dat we niet LO-modellen toch LO kunnen maken door te herformuleren.
Dit kunnen we doen door bv een parameter uit de noemer te verwerken of dingen
herschrijven, een voorbeeld:




Na de herformulering krijgen we dan:




LINDO (Linear Interactive and Discrete Optimizer): een software tool die we kunnen
gebruiken om LO-problemen op te lossen, ze kan echter ook verschillende andere typen
problemen oplossen. We bespreken hier enkele van de commando’s:
- MIN of MAX voor de doelfunctie.
- SUBJECT TO om de beperkingen aan te geven.
- Gebruik geen “*” om vermenigvuldigingen aan te geven tussen variabelen en
coëfficiënten.
- Lindo herkent geen haakjes.
- Ze gaat uit dat > ⇒ ≥ en andersom < ⇒ ≤.
- De niet-negativiteitsbeperking is niet nodig, lindo neemt dit standaard aan.
- Alles achter “!” is commentaar en wordt dus niet uitgevoerd.
- Om een model op te lossen druk je op de dartsknop of gebruik het
SOLVE commando.
- Op het einde van de code zetten we “end” om aan te geven dat de
code eindigt.
$9.69
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
adamloots Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
140
Member since
2 year
Number of followers
30
Documents
22
Last sold
6 hours ago

4.5

8 reviews

5
4
4
4
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions