100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting farmacologie en farmacokinetiek

Rating
4.6
(7)
Sold
46
Pages
232
Uploaded on
28-09-2024
Written in
2023/2024

Samenvatting farmacologie en farmacokinetiek met lessen van alle proffen, tekeningen en powerpoints in verwerkt. Met deze samenvatting behaalde ik 16/20 in eerste zit.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 28, 2024
File latest updated on
September 28, 2024
Number of pages
232
Written in
2023/2024
Type
Summary

Subjects

Content preview

Farmacologie en farmacokinetiek
Deel 1: Een inleiding tot de farmacologie en concepten van
farmacokinetiek
Drug Effect


PK PD

Cp(t) (concentratie van een geneesmiddel in het plasma in functie van de tijd)

Inname van geneesmiddel zorgt voor een zekere conc vh gnsm in het plasma. De
conc geneesmiddel in het plasma gaat variëren in de tijd → in het begin absorptie
en na een tijd eliminatie → wat het lichaam met het gnsm doet
= farmacokinetiek (PK) → grafiek: conc ifv de tijd → vaak gauss achtige curve.

Wat is het effect van de conc geneesmiddel in ons lichaam? Er is een gewenst effect,
maar ook vaak een ongewenst effect (= toxiciteit). Om een effect te bereiken moet er
een minimale werkzame conc worden overschreden (MEC). MIC komt voor in
bacteriologie ≈ MEC. Om geen toxiciteit te krijgen blijven we onder een minimaal
toxische conc (MTC). [D] > MEC en < MTC = therapeutisch venster.
EC50 = conc die aanleiding geeft tot de helft van het maximale effect.
Effect beschrijven geneesmiddel = farmacodynamiek (PD) → grafiek: op x-as log[D] en
op de y-as het effect (R) → S-achtige curve → van geen effect naar maximaal effect.

Absorptie: transport van medicijnen door biologische
membranen
Absorptie is het eerste fundamentele proces om een conc van een gnsm in de circulatie te bekomen.
Mechanismen betreffende de opname van stoffen door biologische membranen
Hoe geraken moleculen over membranen?
Gnsm worden oraal of subcutaan binnengebracht, maar om werkzaam te zijn moeten ze in circulatie
vd patiënt geraken dus moeten over membranen kunnen passeren → ! cruciaal gegeven




1) Patiënt neemt gnsm in bv oraal, bij klinisch onderzoek vaak randvoorwaarden bij inname:
- Nuchter zijn
o ! voor gestandaardiseerd onderzoek → pH stijgt bij eten (tot pH 4) dus dan
verandert ook oplosbaarheid
- Op moment van inname mee een standaard hvlheid water (240ml) innemen
o ! zodat gnsm in maag sneller in oplossing kan gaan → invloed op kinetiek.

1

, 2) In de mond zelf gebeurt er niks met het gnsm
- Niet kauwen !
o Actieve stof kan toxische invloed hebben onder de mucosa (etsend)
o Actieve stof kan beschadigd worden door enzymen → zorgt voor vroegtijdige
afbreking → onwerkzaamheid.

3) In de maag komt gnsm in waterig en zuur milieu
- pH van de maag is en wordt tot stand gebracht door parentele cellen die K+/H+ ATPase
pomp bevatten.
- Maag gaat tablet verbrokkelen, en actieve stof gaat vrijkomen (= API = active
pharmaceutical ingredient).
- Maag bepaald de snelheid waarmee gnsm in dunne darm komt en dus wordt opgenomen
en zijn effect zal hebben op het lichaam.
- !!!! geneesmiddel is meer dan de actieve stof, actieve stof zorgt voor werkzaamheid,
maar ook andere stoffen die zorgen voor oplosbaarheid, kleur, …

➔ Desintegratie en dissolutie (in oplossing komen) zijn samen farmaceutische fase en
zorgen voor vrijkomen actieve stof.

4) Actieve stof moet opgenomen worden = transport over membranen bv in de dunne darm. De
dunne darm bestaat uit enterocyten, lumen van darm bevat actieve stof en deze moet vanuit
lumen in circulatie terecht komen. Moleculen kan op twee manieren in circulatie komen.
Transcellulair transport
= over het membraan van enterocyten

- Passieve diffusie: molecuul opgelost in lumen heeft hogere conc dan in de circulatie (= 0)
→ spontane neiging van moleculen om te bewegen van hoge naar lage conc.




- De snelheid waarmee moleculen passeren over membraan wordt bepaald door
o Diffusieconstante D: te maken met molecuulgrootte, hoe groter hoe moeilijker
over membraan en hoe kleiner de diffusiecte
o Partitiecoëfficiënt P: De P-waarde zegt iets over vetoplosbaarheid.
API heeft nog tegenstribbeling van membraan (lipidedubbellaag), maar API
heeft zekere vetoplosbaarheid.
Partitiecoëfficiënt wordt bepaald in proefbuis door er water, lipide (N-octanol),
[𝐷]𝐿
en daarbovenop gnsm te doen → dit geeft [𝐷]𝐻2𝑂 → hoe vetoplosbaarder, hoe
groter de teller en hoe groter de P, en dus hoe vetlievender uw gnsm. Als een
gnsm heel sterk wateroplosbaar is, dan kleine P
o Oppervlakte A: hoe groter, hoe makkelijker de opname
o Dikte d: is meestal een constante

➢ Alle voorgaande samen nemen onder de constante K

2

, o Concentratiegradiënt ∆C: verschil in concentratie gnsm tussen lumen en circulatie
=K

¤ V = D x (A/d) x P x (C0-Ci)

= Wet van Fick = beschrijft de versch componenten die een rol
spelen in de opname snelheid

Grafisch: x-as is ∆C en y-as is v → lineair verband → grotere
concgradiënt zorgt voor sneller transport → rico wordt bepaald
door een constante K (hybrideconstante opgebouwd uit
verschillende andere constanten)

▪ Partitiecoëfficiënt, hoe groter P is niet per se hoe groter de snelheid,
want als gnsm heel vetoplosbaar (>5) is dan blijft deze in membraan
zitten → zorgt voor toxiciteit → P ≈ 1 is ideaal
• Indien partitiecoeff groot is maar <5 dan gaat gnsm bij opname
met water niet in oplossing gaan en dan wordt het niet
geabsorbeerd → oplossing: opnemen met voedsel als P = 1-4,
zodat deze zo dan makkelijker in oplossing kan gaan
• Indien P te klein is dan zal deze niet oraal kunnen worden
opgenomen want geraakt niet door membraan, dus als P te klein
is moet gnsm intraveneus ingediend worden
• Partitiecoëfficiënt is !-ste constante → als P verandert gaat de
grafiek ook steiler (indien P ↗) of platter worden (P↘)
▪ A is constant in fysiologische omstandigheden, maar door ingrepen kan
een stuk vd darmen worden gebypassed. Orale gnsm worden hierdoor
niet goed geabsorbeerd.
▪ Dikte van membraan kan bij hartstuwingen bv toenemen dus in
pathologische omstandigheden kan de diffusie worden beïnvloed door de
dikte van het membraan.
▪ Molecuulgrootte is ook ! → invloed diffusieconstante
• Small molecules: traditionele gnsm ingenomen als tabletten
(<500 Da), bij groter wordt de diffusieconstante te klein
• Biologicals: gigantisch grote moleculen (1000den Da), kunnen
niet oraal worden ingediend doordat deze niet over membranen
geraken en doordat dit peptides zijn en deze gaan worden
verteerd als je deze oraal indient.

- Wet van Fick zegt hoe snel het gnsm in de circulatie geraakt → lineair verband → rico
wordt bepaald door een constante K (hybrideconstante opgebouwd uit verschillende
andere constanten). Als een bepaalde dosis drug wordt toegediend dan leidt dit tot
bepaalde opname efficiëntie, als de dosis wordt vergroot dan zal de opnameefficiëntie
ook verdubbelen → LINEAIR en onafh van rico van de rechte. Bij een acuut tijdsprobleem
kan de patiënt beter 1x een hoge dosis krijgen dan een lage dosis, want dan zal er
snellere opname zijn en sneller over MEC geraken.

1) Carrier-mediated actief transport: gnsm bindt aan apicale aan carrier en deze gaat vd
buitenkant naar de binnenkant het gnsm transporteren, het gnsm w daarna losgelaten in cel.
Dit is actief transport tegen conc gradiënt in en vereist daarom energie.

3

, Wet van Michaëlis-Menten:
[𝐷]
𝑣= × 𝑣𝑚𝑎𝑥
𝐾𝑚 + [𝐷]
- Bij lage conc gnsm is de snelheid lineair afh van
conc gsnm

- Bij hoge conc gnsm is de Km verwaarloosbaar en
valt de conc gnsm weg en dan krijg je v = vmax →
horizontale rechte

- Het gebied tussen deze twee stukken is een
geleidelijk een overgang van het ene naar het andere (hyperbool achtig)

➔ Als opname van gnsm afh is van carriers dan gaat bij lage aanwezigheid substraat de
opname snelheid toenemen

Verschillen met passieve diffusie en de Wet van Fick zijn:

- Saturatie: Op een bepaald moment zijn alle carriers bezet en dan kan de snelheid niet
meer stijgen en dit is dan de vmax en dit is een situatie van saturatie. Bij het verhogen van
de dosis gnsm zien we dat de opname snelheid vanaf een bepaalde conc niet meer gaat
toenemen (↔passieve diffusie).
o Oplossing: frequent kleinere dosissen geven, ipv éénmalig hoge dosis en zo
saturatie voorkomen.

- Vooral moleculen die te hydrofiel zijn om over membraan te worden opgenomen gaan via
carriers worden binnengebracht. Dit zijn vaak kleine wateroplosbare moleculen die
gelijken op bepaalde voedingsstoffen of andere stoffen in het lichaam en dan aan hun
carriers gaan binden bv lijkend op glucose dus adhv glucose transporter naar binnen
komen, of L-Dopa = precursor van dopamine en gebruikt bij Parkinson, oraal toegediend,
is heel wateroplosbaar, deze gaat binden aan carrier.
o Dit soort moleculen in kleinere dosissen geven en verspreiden over de tijd.
o Zijsprong: L-dopa is precursor van dopamine, decarboxylatie van L-dopa naar
dopamine kan ook al gebeuren bij inname gnsm, maar dit willen we niet dus voegt
men een decarboxylatie inhibitor toe,
maar deze wordt niet mee opgenomen en
zo kan dus in de hersenen dopamine
gevormd worden uit L-dopa

- Substraat specifiek (↔ Wet van Fick): gnsm geraakt pas binnen als het kan binden aan
specifieke carrier.

- Competitie: als carrier gnsm bindt, en er zijn meerdere gnsm die binden aan zelfde carrier
dan gaat er competitie tss die verschillende gnsm zijn, en dan speelt de Km (Michaelis
Menten constante) een belangrijke rol. Het gnsm dat bindt met grootste affiniteit aan
carrier heeft het meeste kans om binnen te geraken. Daarom bv ook best L-dopa nuchter
innemen want anders zal deze in competitie treden met dopamine.

Wet van Fick en Wet van MM zijn de twee belangrijkste vormen, maar enkel besproken aan apicale
kant. Maar proces moet zich heel veel voordoen op tal van plaatsen. Want het moet van absorptie



4
$17.39
Get access to the full document:
Purchased by 46 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 7 reviews
12 minutes ago

There are still some minor errors, and sometimes not so clear, but very complete and comprehensive!

3 weeks ago

2 months ago

2 months ago

Super! Everything about the lesson is in the summary.

2 months ago

11 months ago

1 year ago

Very complete and clear! :)

4.6

7 reviews

5
4
4
3
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
lottecresens Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
61
Member since
2 year
Number of followers
3
Documents
10
Last sold
2 weeks ago

4.6

7 reviews

5
4
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions