100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Mathe Kompakt: Semester-Zusammenfassungen für effizientes Lernen

Rating
-
Sold
-
Pages
181
Uploaded on
28-09-2024
Written in
2023/2024

Dieses Buch bietet eine klare und prägnante Zusammenfassung der wichtigsten mathematischen Konzepte, die während des Semesters behandelt wurden. Ideal für Studierende, die sich schnell auf Prüfungen vorbereiten oder ihr Wissen auffrischen möchten. Die Inhalte sind verständlich strukturiert, mit Beispielen und Lösungswegen, um das Lernen zu erleichtern. Egal, ob du Mathe von Grund auf lernen oder bestehendes Wissen vertiefen willst – dieses Buch liefert dir die wesentlichen Informationen, kompakt und übersichtlich. Alle relevanten Themen des Semesters Schritt-für-Schritt-Erklärungen Praxisnahe Beispiele und Übungen Komplexe Theorien einfach erklärt Perfekt für alle, die ein kompaktes und leicht verständliches Nachschlagewerk suchen!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 28, 2024
Number of pages
181
Written in
2023/2024
Type
Summary

Subjects

Content preview

Nadem Alfiyad




Inhaltsverzeichnis

1) INTEGRALRECHNUNG: .............................................................................................................. 4

A) UNBESTIMMTES INTEGRAL: ............................................................................................................. 4
I. LINEARITÄT DER INTEGRALRECHNUNG: ...................................................................................................... 4

AUFGABE:........................................................................................................................................ 8

I. SUBSTITUTION: ................................................................................................................................... 11
II. PARTIELLE INTEGRATION ...................................................................................................................... 13
III. INTEGRATION MITTELS PARTIALBRUCH ZERLEGUNG: ................................................................................ 15
A) FÄLLE DER PBZ: ......................................................................................................................... 18
IV. AUFGABEN UND ÜBUNGEN .......................................................................................................... 26

B) BESTIMMTE INTEGRAL ........................................................................................................... 38

A) FLÄCHEN BERECHNUNG ............................................................................................................... 38
B) UNEIGENTLICHE INTEGRALE........................................................................................................... 40
I. INTEGRALE MIT UNBESCHRÄNKTEN INTEGRATIONSINTERVALLEN: .................................................................. 40
I. FLÄCHENBERECHNUNG: ........................................................................................................................ 43

2) WEITERE ANWENDUNG DER INTEGRAL: ................................................................................. 47

A) DIE BERECHNUNG DER LÄNGE EINER KURVE ..................................................................................... 47
B) NICHT INTEGRIERBARE FUNKTIONEN MIT TAYLORPOLYNOM ................................................................. 48
C) TRAPEZ VERFAHREN .................................................................................................................... 50

3) GRENZWERT: .......................................................................................................................... 51

• HOSPITAL REGEL FÜR ∞∞ .................................................................................................................... 52

4) FLÄCHE EINES KREISES MIT HILFE DER INTEGRALRECHNUNG: ................................................. 53

5) FLÄCHE ZWISCHEN ZWEI FUNKTIONEN ................................................................................... 54

6) UMFANG EINES KREISES MIT HILFE DER INTEGRALRECHNUNG: .............................................. 55

7) PRÜFUNGSAUFGABEN: ........................................................................................................... 56

8) DGL MIT LAPLACE TRANSFORMATION: ................................................................................... 58

A) LINEARITÄT DER LAPLACE- TRANSFORMATION: .................................................................................. 61
B) LAPLACE- TRANSFORMATION- DÄMPFUNGSSATZ: .............................................................................. 61

,Nadem Alfiyad

C) LAPLACE- TRANSFORMATION- ZEITVERSCHIEBUNGSSATZ ...................................................................... 62
D) LAPLACE- TRANSFORMATION- ÄHNLICHKEITSSATZ .............................................................................. 63
E) LAPLACE- TRANSFORMATION-DIFFERENTIATIONSSATZ ......................................................................... 63
F) LAPLACE- TRANSFORMATION- INTEGRATIONSSATZ .............................................................................. 63
G) LAPLACE- TRANSFORMATION- RÜCKTRANSFORMATION ....................................................................... 64

9) LÖSUNG EINE DGL. 1. ORDNUNG: ........................................................................................... 65

A) ÜBUNGEN DGL: ......................................................................................................................... 67
B) EIGENSCHAFTEN DER LAPLACE TRANSFORMATION .............................................................................. 69
I. DÄMPFUNG........................................................................................................................................ 69
II. MULTIPLIKATION: ............................................................................................................................... 70
III. ÄHNLICHKEIT ODER STRECKUNG: .......................................................................................................... 70
IV. FALTUNG.......................................................................................................................................... 71
V. INTEGRATIONSSATZ ............................................................................................................................. 71
IV. WEITERE ÜBUNGEN: .......................................................................................................................... 72

10) ÜBUNGSBLATT 5 ................................................................................................................... 73

11) ÜBUNGSBLATT 6 ................................................................................................................... 81

12) TAFELBILD: ........................................................................................................................... 87

A) TRANSFORMATION VON FUNKTIONEN: ............................................................................................ 88
ÜBUNG DGL-ELEKTROTECHNIK: ............................................................................................................ 90

13) DGL MIT LAMBDA- VERFAHREN ............................................................................................ 91

A) LAMBDA- VERFAHREN MIT INHOMOGENER GLEICHUNG ...................................................................... 97
B) STÖRFUNKTION .......................................................................................................................... 99
C) LINEARE UNABHÄNGIGKEIT: (FUNDEMENTALITÄT) ............................................................................ 100

14) VARIATION DER VARIABLEN................................................................................................ 102

A) GETRENNTE DGL. VARIABLEN MIT ISOKLINEN- DIAGRAMM BESTIMMEN ............................................ 106
A) INHOMOGENE DGL MIT GETRENNTE VARIABLE: .............................................................................. 108
B) STROM- GLEICHUNG ................................................................................................................. 109
C) SUBSTITUTION: ........................................................................................................................ 110
PRÜFUNGSAUFGABEN: ...................................................................................................................... 112

15) ÜBUNGSBLATT 7 ................................................................................................................. 114

16) ÜBUNGSBLATT 8: ................................................................................................................ 123

17) FOURIER REIHE ................................................................................................................... 125

A) PERIODISCHE DARSTELLUNG JEDER PERIODISCHER FUNKTION ............................................................. 128
B) ÜBERPRÜFUNG AUF GLEICHHEIT DER FOURIER REIHE ........................................................................ 135

,Nadem Alfiyad

C) KOMPLEXE FOURIER REIHE ......................................................................................................... 140

18) ÜBUNG BLATT 9.................................................................................................................. 145

19) PROBEKLAUSUR 1:.............................................................................................................. 158

20) PROBE KLAUSUR ................................................................................................................ 165

FOURIER TRANSFORMATION ....................................................................................................... 171

, Nadem Alfiyad


1) Integralrechnung:
a) Unbes(mmtes Integral:
Ist 𝐹(𝑥), so heißt für 𝐹(𝑥) eine Stammfunk9on von 𝑓(𝑥).
Ist eine Stammfunk9on von 𝑓, so erhält man alle Stammfunk9onen von 𝑓, wenn man eine
𝑐 ∈ ℝ zu F addieren

+ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝐶


I. Linearität der Integralrechnung:
+ 𝛼 𝑓(𝑥) + 𝛽𝑔(𝑥)𝑑𝑥 = 𝛼 + 𝑓(𝑥) 𝑑𝑥 + 𝛽 + 𝑔(𝑥) 𝑑𝑥

Beispiele für die Linearität:
1
+(𝑥 ! ) 𝑑𝑥 = 𝑥 !"# , 𝑟 ∈ ℝ ∧ 𝑟 ≠ −1
𝑟+1

Beispiel:
3
+ 3𝑥 $ 𝑑𝑥 = 3 + 𝑥 $ 𝑑𝑥 = 𝑥 % + 𝐶
3

& ! (()
Integra9on von &(() Ableitung des Nenners im Zähler
𝑓 * (𝑥)
+ 𝑑𝑥 = ln(|𝑓(𝑥)|) + 𝑐
𝑓(𝑥)
& ! (()
Wenn Sie eine Funk9on der Form ln<𝑓(𝑥)= ableiten, stellen Sie fest: 𝑙𝑛* <𝑓(𝑥)= = &(()
d.h. die Ableitung des Nenners steht im Zähler.

Beispiele:
e)
a)
3𝑥 $ + 2𝑥
1 + % 𝑑𝑥 = ln(|𝑥 % + 𝑥 $ |) + 𝑐
+ 𝑑𝑥 = ln(|𝑥|) + 𝑐 𝑥 + 𝑥$
𝑥
f)
b)
1 𝑥 +#
+ 𝑑𝑥 = ln(|𝑥 + 3|) + 𝑐 + 𝑑𝑥 = ln(|𝑙𝑛(𝑥)|) + 𝑐
𝑥+3 ln(𝑥)

c)
1 1 3 1
+ 𝑑𝑥 = + 𝑑𝑥 = ln(|3𝑥 − 3|) + 𝑐
3𝑥 − 3 3 3𝑥 − 3 3

e) g)
−sin(𝑥) 𝑥$ 1
+ 𝑡𝑎𝑛(𝑥) 𝑑𝑥 = − + 𝑑𝑥 + %
𝑑𝑥 = ln(|𝑥 % + 4|) + 𝑐
cos(𝑥) 𝑥 +4 2
sin(𝑥)
= −+ 𝑑𝑥 = − ln(|𝑐𝑜𝑠(𝑥)|) + 𝑐
cos(𝑥)
$8.66
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
nademalfiyad

Get to know the seller

Seller avatar
nademalfiyad Hochschule für Technik und Wirtschaft Berlin
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions