Inhaltsverzeichnis
1) INTEGRALRECHNUNG: .............................................................................................................. 4
A) UNBESTIMMTES INTEGRAL: ............................................................................................................. 4
I. LINEARITÄT DER INTEGRALRECHNUNG: ...................................................................................................... 4
AUFGABE:........................................................................................................................................ 8
I. SUBSTITUTION: ................................................................................................................................... 11
II. PARTIELLE INTEGRATION ...................................................................................................................... 13
III. INTEGRATION MITTELS PARTIALBRUCH ZERLEGUNG: ................................................................................ 15
A) FÄLLE DER PBZ: ......................................................................................................................... 18
IV. AUFGABEN UND ÜBUNGEN .......................................................................................................... 26
B) BESTIMMTE INTEGRAL ........................................................................................................... 38
A) FLÄCHEN BERECHNUNG ............................................................................................................... 38
B) UNEIGENTLICHE INTEGRALE........................................................................................................... 40
I. INTEGRALE MIT UNBESCHRÄNKTEN INTEGRATIONSINTERVALLEN: .................................................................. 40
I. FLÄCHENBERECHNUNG: ........................................................................................................................ 43
2) WEITERE ANWENDUNG DER INTEGRAL: ................................................................................. 47
A) DIE BERECHNUNG DER LÄNGE EINER KURVE ..................................................................................... 47
B) NICHT INTEGRIERBARE FUNKTIONEN MIT TAYLORPOLYNOM ................................................................. 48
C) TRAPEZ VERFAHREN .................................................................................................................... 50
3) GRENZWERT: .......................................................................................................................... 51
• HOSPITAL REGEL FÜR ∞∞ .................................................................................................................... 52
4) FLÄCHE EINES KREISES MIT HILFE DER INTEGRALRECHNUNG: ................................................. 53
5) FLÄCHE ZWISCHEN ZWEI FUNKTIONEN ................................................................................... 54
6) UMFANG EINES KREISES MIT HILFE DER INTEGRALRECHNUNG: .............................................. 55
7) PRÜFUNGSAUFGABEN: ........................................................................................................... 56
8) DGL MIT LAPLACE TRANSFORMATION: ................................................................................... 58
A) LINEARITÄT DER LAPLACE- TRANSFORMATION: .................................................................................. 61
B) LAPLACE- TRANSFORMATION- DÄMPFUNGSSATZ: .............................................................................. 61
,Nadem Alfiyad
C) LAPLACE- TRANSFORMATION- ZEITVERSCHIEBUNGSSATZ ...................................................................... 62
D) LAPLACE- TRANSFORMATION- ÄHNLICHKEITSSATZ .............................................................................. 63
E) LAPLACE- TRANSFORMATION-DIFFERENTIATIONSSATZ ......................................................................... 63
F) LAPLACE- TRANSFORMATION- INTEGRATIONSSATZ .............................................................................. 63
G) LAPLACE- TRANSFORMATION- RÜCKTRANSFORMATION ....................................................................... 64
9) LÖSUNG EINE DGL. 1. ORDNUNG: ........................................................................................... 65
A) ÜBUNGEN DGL: ......................................................................................................................... 67
B) EIGENSCHAFTEN DER LAPLACE TRANSFORMATION .............................................................................. 69
I. DÄMPFUNG........................................................................................................................................ 69
II. MULTIPLIKATION: ............................................................................................................................... 70
III. ÄHNLICHKEIT ODER STRECKUNG: .......................................................................................................... 70
IV. FALTUNG.......................................................................................................................................... 71
V. INTEGRATIONSSATZ ............................................................................................................................. 71
IV. WEITERE ÜBUNGEN: .......................................................................................................................... 72
10) ÜBUNGSBLATT 5 ................................................................................................................... 73
11) ÜBUNGSBLATT 6 ................................................................................................................... 81
12) TAFELBILD: ........................................................................................................................... 87
A) TRANSFORMATION VON FUNKTIONEN: ............................................................................................ 88
ÜBUNG DGL-ELEKTROTECHNIK: ............................................................................................................ 90
13) DGL MIT LAMBDA- VERFAHREN ............................................................................................ 91
A) LAMBDA- VERFAHREN MIT INHOMOGENER GLEICHUNG ...................................................................... 97
B) STÖRFUNKTION .......................................................................................................................... 99
C) LINEARE UNABHÄNGIGKEIT: (FUNDEMENTALITÄT) ............................................................................ 100
14) VARIATION DER VARIABLEN................................................................................................ 102
A) GETRENNTE DGL. VARIABLEN MIT ISOKLINEN- DIAGRAMM BESTIMMEN ............................................ 106
A) INHOMOGENE DGL MIT GETRENNTE VARIABLE: .............................................................................. 108
B) STROM- GLEICHUNG ................................................................................................................. 109
C) SUBSTITUTION: ........................................................................................................................ 110
PRÜFUNGSAUFGABEN: ...................................................................................................................... 112
15) ÜBUNGSBLATT 7 ................................................................................................................. 114
16) ÜBUNGSBLATT 8: ................................................................................................................ 123
17) FOURIER REIHE ................................................................................................................... 125
A) PERIODISCHE DARSTELLUNG JEDER PERIODISCHER FUNKTION ............................................................. 128
B) ÜBERPRÜFUNG AUF GLEICHHEIT DER FOURIER REIHE ........................................................................ 135
,Nadem Alfiyad
C) KOMPLEXE FOURIER REIHE ......................................................................................................... 140
18) ÜBUNG BLATT 9.................................................................................................................. 145
19) PROBEKLAUSUR 1:.............................................................................................................. 158
20) PROBE KLAUSUR ................................................................................................................ 165
FOURIER TRANSFORMATION ....................................................................................................... 171
, Nadem Alfiyad
1) Integralrechnung:
a) Unbes(mmtes Integral:
Ist 𝐹(𝑥), so heißt für 𝐹(𝑥) eine Stammfunk9on von 𝑓(𝑥).
Ist eine Stammfunk9on von 𝑓, so erhält man alle Stammfunk9onen von 𝑓, wenn man eine
𝑐 ∈ ℝ zu F addieren
+ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝐶
I. Linearität der Integralrechnung:
+ 𝛼 𝑓(𝑥) + 𝛽𝑔(𝑥)𝑑𝑥 = 𝛼 + 𝑓(𝑥) 𝑑𝑥 + 𝛽 + 𝑔(𝑥) 𝑑𝑥
Beispiele für die Linearität:
1
+(𝑥 ! ) 𝑑𝑥 = 𝑥 !"# , 𝑟 ∈ ℝ ∧ 𝑟 ≠ −1
𝑟+1
Beispiel:
3
+ 3𝑥 $ 𝑑𝑥 = 3 + 𝑥 $ 𝑑𝑥 = 𝑥 % + 𝐶
3
& ! (()
Integra9on von &(() Ableitung des Nenners im Zähler
𝑓 * (𝑥)
+ 𝑑𝑥 = ln(|𝑓(𝑥)|) + 𝑐
𝑓(𝑥)
& ! (()
Wenn Sie eine Funk9on der Form ln<𝑓(𝑥)= ableiten, stellen Sie fest: 𝑙𝑛* <𝑓(𝑥)= = &(()
d.h. die Ableitung des Nenners steht im Zähler.
Beispiele:
e)
a)
3𝑥 $ + 2𝑥
1 + % 𝑑𝑥 = ln(|𝑥 % + 𝑥 $ |) + 𝑐
+ 𝑑𝑥 = ln(|𝑥|) + 𝑐 𝑥 + 𝑥$
𝑥
f)
b)
1 𝑥 +#
+ 𝑑𝑥 = ln(|𝑥 + 3|) + 𝑐 + 𝑑𝑥 = ln(|𝑙𝑛(𝑥)|) + 𝑐
𝑥+3 ln(𝑥)
c)
1 1 3 1
+ 𝑑𝑥 = + 𝑑𝑥 = ln(|3𝑥 − 3|) + 𝑐
3𝑥 − 3 3 3𝑥 − 3 3
e) g)
−sin(𝑥) 𝑥$ 1
+ 𝑡𝑎𝑛(𝑥) 𝑑𝑥 = − + 𝑑𝑥 + %
𝑑𝑥 = ln(|𝑥 % + 4|) + 𝑐
cos(𝑥) 𝑥 +4 2
sin(𝑥)
= −+ 𝑑𝑥 = − ln(|𝑐𝑜𝑠(𝑥)|) + 𝑐
cos(𝑥)