100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Sumario Guía para estudiar matemáticas

Rating
-
Sold
-
Pages
65
Uploaded on
27-09-2024
Written in
2024/2025

Documento útil para aprender matemáticas para arquitectos












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
September 27, 2024
Number of pages
65
Written in
2024/2025
Type
Summary

Subjects

Content preview

GuíadeEstudioTema3




Tema 3: Cálculo Diferencial de funciones reales de una variable y sus
aplicaciones.
Presentacióndeltema
Uno de los principales problemas que dio origen al Cálculo Diferencial fue el de la
determinación de la recta tangente a una curva en un punto dado.
Lapalabratangenteprovienedellatíntangens,quesignifica“tocar”
Este problema tiene antecedentes en la Grecia Antigua donde ya se había
determinado la forma de trazar una tangente a una circunferencia, definida por
Euclides, como “la única recta que interseca a una circunferencia sólo en un
punto P de la misma”
Esteconcepto,comocriterioparaladefiniciónderectatangente,esparaotrascurvas
demasiado amplio y restrictivo a la vez.




Observe que en la figura 1 la curva es una circunferencia y por tanto la definición de
recta tangente dada por Euclides es satisfactoria.
Sin embargo para las curvas de las figuras restantes la definición dada no es
adecuada, ya queunamisma recta queestangenteala curva enun puntopuedeno
setangenteenotropuntodedichacurva(Figura2),opuedeocurrirqueporunmismo punto
de la curva pasen infinitas rectas tangentes (Figura 3)
De esta problemáticasurge la necesidad deencontrar unaforma generalde resolver el
problema de la tangente. Muchos matemáticos trabajaron en ello.
Arquímedes: Fue capaz de determinar la recta tangente a varias curvas, en especial
a la hoy llamada “Espiral de Arquímedes”(se desconoce cómo obtuvo estos
resultados)



1

, GuíadeEstudioTema3


Fermat(1629): Realizótrabajos fructíferosrelacionadoscon el trazadodelarecta
tangente a una curva.
Descartes:Sedistingueporsustrabajosdecarácteralgebraico.
Isaac Barrow 1630-1677 (maestro de Newton) Es el que por primera vez resolvió el
problema de la determinación de la tangente a una curva en un punto.




Aquí hay implícito un límite el cual Barrow no utilizó, pero preparó el camino para el
surgimiento del Cálculo, mérito reservado para Newton y Leibniz, los cuales llegaron
al mismo de forma independiente.




IsaacNewton,enladécadade1660,fueelprimeroenformularexplícitamentelaidea de la
derivada, basándose en los métodos aplicados para hallar rectas tangentes a una
curva de su maestro Isaac Barrow (1630-1677) y de Pierre Fermat (1601-1665).
Enlaactualidadelmodelodeladerivadaesampliamenteutilizado,nosolopara determinar la
pendiente de la recta tangente a una curva en un punto, sino también
paracalcularlarapidezdecambiodeunamagnitudrespectoaotraendiferentes


2

, GuíadeEstudioTema3


fenómenosdelaingeniería,laeconomía,procesosbiológicosyotrasramas dela
ciencia.
Objetivos específicos.
1. Interpretarelconceptodederivadadeunafunciónenun punto.
2. Interpretargeométricayfísicamenteelconceptodederivada.
3. Interpretar propiedades, teoremas y reglas de derivación de funciones reales
de una variable.
4. Calcular derivadas sencillas utilizandolosteoremas fundamentales,
propiedades y reglas de derivación de funciones de una variable.
5. Interpretar el concepto de diferencial y su relación con el incremento de la
función
6. Calcular límites aplicando la regla de L´Hospital para la evaluación de formas
indeterminadas.
7. Modelar y/o resolver problemas sencillos de tipos físicos, geométricos y
técnicos relacionados con la especialidad,aplicando conceptos, teoremas y
métodos del cálculo diferencial, evaluando críticamente los resultados
obtenidos.
8. Interpretarelconceptodeextremodeunafunción.
9. Identificarlospuntosdeextremosdeunafunciónapartirdeunanálisisgráfico y
clasificarlos en absolutos, relativos, ordinarios y extraordinarios.
10. Calcularextremosdefuncionesrealesdeuna variable.
11. Determinarlosintervalosdemonotoníadeunafunción.
12. Resolverproblemasdeoptimizaciónutilizandolateoríadeextremosde funciones
reales de una variable.
13. Interpretar el concepto de punto de inflexión de la gráfica de una función real
de una variable.
14. Calcularlospuntosdeinflexióndelagráficadeunafunciónrealdeunavariable.
15. Determinarlosintervalosdeconcavidaddeunafunciónrealdeunavariable.
16. Analizarelcomportamientolocalyglobal,defuncionesrealesdeunavariable,
utilizando derivadas ordinarias y de orden superior.
17. Graficarfuncionesdeunavariableapartir de ladeterminacióndesus
propiedades fundamentales.
Requisitosprevios


3

, GuíadeEstudioTema3


Para este tema se requiere el dominio de la mayoría de los contenidos matemáticos
aprendidos en la enseñanza precedente (funciones, geometría, trigonometría y
tecnicismo algebraico)
Actividades.
Actividad1.Conferenciaorientadoradondeseabordanlosconceptosfundamentales del
tema.
Título:Derivadasdefuncionesrealesdeuna variable
Sumario:
 Definicióndederivadadeunafunciónenunpunto.
 Interpretacióngeométricayfísicadeladerivada.
 Reglasde derivación.
 Derivadasdefuncioneselementales.
 Derivadasdefuncionesinversas,compuestasyenforma paramétrica.
 Derivadasdeordensuperior.
 Diferencial.
 Aplicacionesdelasderivadas.
Objetivosespecíficos.
1. Interpretarelconceptodederivadadeunafunciónenunpunto.
2. Interpretargeométricayfísicamenteelconceptodederivada.
3. Interpretar propiedades, teoremasy reglas de derivación de funciones
reales de una variable.
4. Calcularderivadasaplicandopropiedades,teoremasyreglasdederivación de
funciones reales de una variable.
5. Interpretar el concepto de diferencial y su relación con el incremento de la
función.
6. Modelar y/o resolver problemas sencillos de tipos físicos, geométricos y
técnicos relacionados con la especialidad,aplicando conceptos, teoremas
y métodos del cálculo diferencial, evaluando críticamente los resultados
obtenidos.
Bibliografía:
“CálculoconTrascendentesTempranas”JamesStewartParte1
OrientacióndeloscontenidosbásicosDesarr
ollo del contenido


4
$7.89
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
gabrielle12

Get to know the seller

Seller avatar
gabrielle12 Universidad Tecnologia de laHabana CUJAE
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
13
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions