100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Advanced Econometrics 2 (6414M0006Y)

Rating
-
Sold
5
Pages
25
Uploaded on
27-09-2024
Written in
2023/2024

Extensive summary of the course Advanced Econometrics 2.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 27, 2024
Number of pages
25
Written in
2023/2024
Type
Summary

Subjects

Content preview

X = Xi N(p . ) and 22 X (v) )
*

In all chapters before, we used asymptotic theory, ex CLT chi-square z - N(0 ,,



An alternative approximation is provided by bootstrap
Bootstrapping is used to estimate (by simulations), the sampling
X
distribution, by repeatedly sampling from the observed sample/data. The
2 approaches goal of bootstrapping is to make inference about a population, without
making strong assumptions about the underlying distribution.
I
Simple bootstrapping: draws asymptotic conclusions when theory is hard to implement
2
Bootstrap with asymptotic refinements: provides asymptotic refinements that lead to better approximations

notation
·
estimate
·
(yi xi) sample
wi =
,




S standard error
18-80)
t =

t-statistic
58


· Go
estimate under the null hypothesis

basics of bootstrapping
I
Simple bootstrapping
Suppose yi F(p 0)) -
,




F is a random population distribution ex. Normal or Chi-square
>




Hence real population F(m 8) ,




sample/bootstrap population Sy ya
>
, . . .
.,




bootstrap sample Syr, ] can generate B bootstrap sample (using
>
...,
*


ya
<




replacements ! )
N then we can calculate
1 B

*


mean of means: y *
=
Ba = 1
yb
I




variance of means: Var(j) =
B -

1, (yb -



y
*
)2
>
&




In general, for estimator ⑦ , we can use bootstrapping to estimate Var(8) , when analytic formulas
for Var (8) are complex. Such bootstraps are valid and have similar properties to estimates obtained
from the usual theory

2
Bootstrapping with asymptotic refinements
In some cases it is possible to improve on the simple bootstrapping and obtain estimates that may better
M



approximate the finite sample distribution of ⑦ , using refined asymptotic
I
theory

-




(8-00)

Until now we know the following from asymptotic theory (Taylor expansion): P No z -
=
P(z) + R ,


(z)((z)

We now look at Edgeworth expansion: p[n(f) (2
g ,




(2) R2 = + N +

, The Edgeworth expansion is a better approximation but difficult to implement theoretically. A bootstrap
with asymptotic refinement provides a simple computational method to implement Edgeworth expansion
N



For asymptotic refinement to occur, the statistic being bootstrapped must be an asymptotically pivotal
statistic
a statistic whose limit distribution does not depend on unknown parameters
>




Ex. yi F(p z) , depends on F, M and 82 . Then j
-
,
<
N(p . ), depends on M and 0.0M Under H =

Mo , the
i -



Mo
2


distribution still depends on , using SE(j) G 5 =
>
N(o 1) , we find pivotal statistic

bootstrap algorithm
step 1: we have the given data Ew wa] , draw a bootstrap sample & wi*, ...... , ....
wa
*
Y

step 2: calculate appropriate
(8 8)
statistics *
-




**
*



ex. S *,
=
S
*




step 3: repeat steps 1 and 2, B independent times and obtain ex. Y Es
* *



or A ti .... , ....




step 4: use these bootstrapped values to obtain a bootstrapped version of the statistics
ex. bias & , approximates E(0) 0 I
-




standard error SEboo(8) (8 8 ]
*

:
B-1 -




2-sided equal tail CI (8 -

A *.. EJIB + 1] SE(8) ,
8-fELB + ] SE(E)) An I ...
I Ass


bootstrapped p-value 2 min (5) . (1)


Example Co .
07 ,
0 . 031 ,
0 .
338 ,
1 .
690 ,
3 .
392 ,
0 411
.

,
0 .
479 ,
3 .
572 ,
0 .
637 ,
0 .
434
Ho Ha = 5 %
M
:
x
M vs 1 =
= 1
,





Bootstrap without refinement (when standard error is hard to determine)
X -
1 * -
1 1 .
100 -
1
&
5 :
SEboot N(o ,
1) ,
jobs :
seroot
=
0 . 399 =
0 .
251 ( -
0
,
1 .
96]u [1 .
96 ,
a)

E
Bootstrap with refinement
- S : ! (xi - x) -

further details about bootstrapping
Types of bootstrapping
In step 1 of the algorithm, we can use different kind of bootstrapping
&
Paired bootstrap/non-parametric bootstrap/empirical distribution function bootstrap: draw bootstrap
sample from Ew wa] with (yi xi) ,
,
. .
..
wit ,




*
Parametric bootstrap: draw randomly from F(xi , )
o
Residual bootstrap: bootstrap from the residuals ( .
,
. . .
,
un) , to get (ii, ....
*
n

, Optimal number of bootstraps
Bootstrap remains valid voor finite B, as it relies on N >




B (YB-Yo)/ % "
>
No ,
w)

quantity of interest 7 B =




quantity of interest
7




Rule of thumb: B =
3846




ex. standard deviation = (2 (g) w +

a(1 -
x)

symmetric two sided test/CI w = (22x24(2x)) Look at loss in power when choosing B, we find that
when testing choose B such that a(B 1) is an integer
+




Standard error estimation
When it is hard to estimate the standard error, we can do this using bootstrapping

SEB :
B ! ( *** ) 7 Bootstrap estimate of the standard error
<**B


As this bootstrap estimate is consistent, we can use it in place of 5




Hypothesis testing
Tests with asymptotic refinenement (8 00) -




note that the usual test statistic is N(o 1) T =
58
>
,




Yit is a pivotal statistic, hence it has potential for asymptotic refinement
>




percentile t-method: (E -00)

produce A ,* A using A .... ,
=
Sb
*




these values ordered from smallest to largest is used to approximate the distribution of
7 T



then we can specify the bootstrap critical values
"
*

H .
: 0 < 0 :

reject if t = A (x(B + 1))

Hi ((1 a)(B 1))
*

:
8 >
to :

reject if A2 t - +




(E(B 1)) )) -E)(B 1))
* *

H: At 00 :

reject if t = t + or t = t , +




Tests without asymptotic refinenement
8 -
Go

compute t SEBooT(f) and compare to critical value of standard normal distribution
I =




percentile method: find the lower * and upper * quantile of the bootstrap values
2 ** and
reject Ho if Do falls outside this region
reject Ho if fo is not contained in (8(B
> * 1) + 1 ,
( , -
E)(B + ,

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
maaikekoens Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
4 year
Number of followers
0
Documents
9
Last sold
4 weeks ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions