100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Rating
-
Sold
-
Pages
69
Grade
A+
Uploaded on
17-09-2024
Written in
2024/2025

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Institution
Game Theory Basics 1st Edition By Bernhard Von St
Course
Game Theory Basics 1st Edition By Bernhard von St











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Game Theory Basics 1st Edition By Bernhard von St
Course
Game Theory Basics 1st Edition By Bernhard von St

Document information

Uploaded on
September 17, 2024
Number of pages
69
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS m m m




1 - Nim and Combinatorial Games
m m m m m




2 - Congestion Games
m m m




3 - Games in Strategic Form
m m m m m




4 - Game Trees with Perfect Information
m m m m m m




5 - Expected Utility
m m m




6 - Mixed Equilibrium
m m m




7 - Brouwer’s Fixed-Point Theorem
m m m m




8 - Zero-Sum Games
m m m




9 - Geometry of Equilibria in Bimatrix Games
m m m m m m m




10 - Game Trees with Imperfect Information
m m m m m m




11 - Bargaining
m m




12 - Correlated Equilibrium
m m m




2

,Game Theory Basics
m m




Solutions to Exercises
m m



©m BernhardmvonmStengelm2022

SolutionmtomExercisem1.1

(a) Letm≤mbemdefinedmbym(1.7).m Tomshowmthatm≤mismtransitive,mconsidermx,my,mzmwithmxm ≤mymandmym≤mz.mIf
mxm=mymthenmxm≤mz,mandmifmym=mzmthenmalsomxm≤mz.mSomthemonlymcasemleftmismxm<mymandm ym <m z,mwhic

hmimpliesmxm <m zmbecausem<mismtransitive,mandmhencemxm ≤mz.
Clearly,m≤mismreflexivembecausemxm=mxmandmthereforemxm≤mx.
Tomshowmthatmmmmm
≤ ismantisymmetric,mconsidermxmandmymwithmxmmmmmym≤andmymmmmmx.m≤Ifmwemhadmxm≠my
mthenmxm<mymandmym<mx,mandmbymtransitivitymxm<mxmwhichmcontradictsm(1.38).mHencemxm =m y,masmre

quired.m Thismshowsmthatm≤mismampartialmorder.
Finally,mwemshowm(1.6),msomwemhavemtomshowmthatmxm<mymimpliesmxmmmymand≤ mxm≠mymandmvicemversa

.mLetmxm<my,mwhichmimpliesmxmymbym(1.7).mIfmwem≤ hadmxm=mymthenmxm<mx,mcontradictingm(1.38),msomw
emalsomhavemxm≠my.m Conversely,mxmmm ymandmxm≠mymimplymbym(1.7)mxm <≤m ymorm xm =m ymwheremthemsecond
mcasemismexcluded,mhencem xm <m y,masmrequired.


(b) Considermampartialmordermand ≤massumem(1.6)masmamdefinitionmofm<.mTomshowmthatm<mismtransitiv
e,msupposemxm<my,mthatmis,mxmymandmxm≠my,≤mandmym<mz,mthatmis,mymzmandmym≠mz.mBecausemmmmismtransit

ive,mxmmmmz.≤
mIfmwemhadmxm=mzmthenmxmmmmmymandmymmmmmxmandmhencemxm=mymbymantisymmetrymofmmmm,m
≤ ≤ ≤
whichmcontradictsm xm ≠m y,msomwemhavem xmmmmzmandm xm ≠m z,mthatmis,mxm <m zmbym(1.6),masmrequired.
≤ ≤
Also,m<mismirreflexive,mbecausemxm<mxmwouldmbymdefinitionmmeanmxmmmxmandm≤xm≠mx,mbutmthemlatter
mismnotmtrue.


Finally,mwemshowm(1.7),msomwemhavemtomshowmthatmxm ≤mymimpliesmxm<mymormxm=mymandmvicemversa,
mgivenmthatm<mismdefinedmbym(1.6).mLetmxm≤my.mThenmifmxm=my,mwemaremdone,motherwisemxm≠mymand
mthenmbymdefinitionmxm<my.mHence,mxm≤mymimpliesmxm<mymormxm=my.mConversely,msupposemxm <m ymor

mxm=my.m Ifmxm <m ymthenmxm ≤mymbym(1.6),mandmifmxm=mymthenmxm ≤m ymbecausem ≤mismreflexive.m Thismco

mpletesmthemproof.

SolutionmtomExercisem1.2

(a) Inm analysingm them gamesm ofm threem Nimm heapsm wherem onem heapm hasm sizem one,m wem firstm lookmatmso
memexamples,mandmthenmusemmathematicalminductionmtomprovemwhatmwemconjecturemtombemthemlosin
gmpositions.mAmlosingmpositionmismonemwheremeverymmovemismtomamwinningmposition,mbecausemth
enmthemopponentmwillmwin.m Thempointmofmthismexercisemismtomformulatemamprecisemstatementmtomb
emproved,mandmthenmtomprovemit.
First,mifmtheremaremonlymtwomheapsmrecallmthatmtheymaremlosingmifmandmonlymifmthemheapsmaremof
mequalmsize.m Ifmtheymaremofmunequalmsize,mthenmthemwinningmmovemismtomreducemthem largermheap
msomthatmbothmheapsmhavemequalmsize.




3

, Considermthreemheapsmofmsizesm1,mm,mn,mwherem1mmmmmm≤mmmmmn. ≤mWemobservemthemfollowing:m1,m1,m
mmismwinning,mbymmovingmtom1,m1,m0.mSimilarly,m1,mm,mmmismwinning,mbymmovingmtom0,mm,mm.mN
ext,m1,m2,m3mismlosingm(observedmearlierminmthemlecture),mandmhencem1,m2,mnmformnm4mismwinning.
m1,m3,mnmismwinningmformanymnm3mbymmovingmtom1,m3,m2.mForm1,m4,m5,mreducingmanymheapmprodu
≥ ≥
cesmamwinningmposition,msomthismismlosing.
Themgeneralmpatternmformthemlosingmpositionsmthusmseemsmtombe:m1,mm,mmm1,mform+evenmnumber
smm.m Thismincludesmalsomthemcasemmm=m0,mwhichmwemcanmtakemasmthembasemcasemformanminduction
.m Wemnowmproceedmtomprovemthismformally.
Firstmwemshowmthatmifmthempositionsmofmthemformm1,mm,mnmwithmmmmmmmmnm≤aremlosingmwhenmmmisme
venmandmnm=mmm1,mthenm+ thesemaremthemonlymlosingmpositionsmbecausemanymothermpositionm1,mm,m
nm withmmm m nm ismwinning.m ≤ Namely,mifmmm =mnm thenmamwinningmmovemfromm1,mm,mmmismtom0,mm,mm,m
somwemcanmassumemmm<mn.m Ifmmmismevenmthenmnm>mmm m 1m(otherwisemwemwouldmbeminmthempositionm
+
1,mm,mmm m 1)mandmsomthemwinningmmovemismtom1,mm,mmm m 1.mIfmmmismoddmthenmthemwinningmmovemi
+ +
smtom1,mm,mmm1,mthemsamemasmpositionm1,mmm1,mmm(thismwouldm alsom bem am winningm movem fromm 1,mm,m
mm som therem them winningm movem ism notm unique). – −

Second,mwemshowmthatmanymmovemfromm1,mm,mmm+m1mwithmevenmmmismtomamwinningmposition,musingm
asminductivemhypothesismthatm1,mmJ,mmJm+m1mformevenmmJmandmmJm<mmmismamlosingmposition.mThem
movemtom0,mm,mmm+m1mproducesmamwinningmpositionmwithmcounter-
movemtom0,mm,mm.mAmmovemtom1,mmJ,mmm+m1mformmJm<mmmismtomamwinningmpositionmwithmthemcounter-
movemtom1,mmJ,mmJm+m1mifmmJmismevenmandmtom1,mmJ,mmJm−m1mifmmJmismodd.mAmmovemtom1,mm,mmmismt
omamwinningmpositionmwithmcounter-
movemtom0,mm,mm.mAmmovemtom1,mm,mmJmwithm mJm<m mmismalsomtomamwinningmpositionmwithmthemcount
er-
movemtom1,mmJm−m1,mmJmifm mJmismodd,mandmtom1,mmJm 1,mmJmifmmJmismevenm(inmwhichmcasemmJm 1m<mmm
+ mconcludesmtheminductionmproof.
becausemmmismeven).mThis +
ThismresultmisminmagreementmwithmthemtheoremmonmNimmheapmsizesmrepresentedmasmsumsmofmpowers
0
mofm2:m 1m m mm m nmismlosingmifmandmonlymif,mexceptmform2 ,mthempowersmofm2mmakingmupmmmandmnmco
∗m +∗ +∗
meminmpairs.mSomthesemmustmbemthemsamempowersmofm2,mexceptmform1m=m20,mwhichmoccursminmonlym
mmormn,mwheremwemhavemassumedmthatmnmismthemlargermnumber,msom1mappearsminm them representatio
nm ofm n:m Wem havem mm =m 2ammmmmm2bmmmmmm2c
+ + +m ·m ·m ·
form am >m bm >m cm >mmmmmmmm 1,mso
a b·mm ·+
mm ·mm ≥c + +m ·m ·m ·m + +
m mm ism even,m and,m withm them samem a,mb, mc, m.m. m.,m nm =m 2 2 2 1m =m mmmmm 1.m Then
m m m


∗1mmmmmmm
+m ∗ m+mmmmm
m∗ nmmmmmm 0.m Them followingm ism anmexamplem usingm them bitmrepresentationmwhere
mm=m12m(which
≡m∗ mdeterminesmthembitmpatternm1100,mwhichmofmcoursemdependsmonmm):
1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) Wemusem(a).mClearly,m1,m2,m3mismlosingmasmshownminm(1.2),mandmbecausemthemNim-
summofmthembinarymrepresentationsm01,m10,m11mism00.mExamplesmshowmthatmanymothermpositio
nmismwinning.mThemthreemnumbersmaremn,mnm+1,mnm m+2.mIfmnmismevenmthenmreducingmthemheapmofmsize
mnm2mtom1mcreatesmthempositionmn,mnm 1,m1mwhichmismlosingmasmshownminm(a).mIfmnmismodd,mthenm
+ +
nm 1mismevenmandmnmmm2m=m nmmm1mmm1msombymthemsamemargument,mamwinningmmovemismtomreduce
+ +
mthemNimmheapmofmsizemnmtom1m(whichmonlymworksmifmnm >m1).
(m +m )m+




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
VANFuturenurses02 NURSING
View profile
Follow You need to be logged in order to follow users or courses
Sold
22
Member since
1 year
Number of followers
2
Documents
945
Last sold
6 days ago

TestsBanks !!!I have Accounting, Finance, Biology, Chemistry, Economics, Nursing and other Subjects A+ Testsbanks Hello, my documents are 100% guaranteed to help you Ace in your studies, my goal is to empower and help you in your career, I represent more professional nursing specialties and other courses. All the materials posted are A+ Graded. Please rate and write a review after using my materials. Your reviews will motivate me to add more materials. THANKYOU AND GOOD LUCK.

Read more Read less
3.3

6 reviews

5
2
4
2
3
0
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions