100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Class notes

lecture notes: Health Psychology Part 2

Rating
-
Sold
2
Pages
127
Uploaded on
12-09-2024
Written in
2023/2024

A comprehensive course text based on the lecture notes for Health Psychology Part 2 by von Leupoldt Andreas. This document includes all the information from the slides, as well as additional notes from the lectures. It is highly organized with a clear table of contents (which you can find for free in another document, so the sample pages provide a clear example of my notes). This complete resource covers all the essential material, consolidating everything you need into one document.

Show more Read less
Institution
Course

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 12, 2024
Number of pages
127
Written in
2023/2024
Type
Class notes
Professor(s)
Von leupoldt andreas
Contains
All classes

Subjects

Content preview

HEALTH PSYCHOLOGY
INTRODUCTION
Aims:
1. Thorough knowledge and insight into the basic processes of psychological stress. These imply:
 Homeostatic regulation& the autonomic nervous system
 Central integration of stress response
 Inhibition of stress responses
 Endocrine stress reactions
 Psychoneuroimmunology
 Genes, stress and behavior
 Individual differences in stress reactivity


2. Knowledge ofcontemporary research topics regarding health effects of stress, with a special focus on the
(presumed) explaining mechanisms.
 Furthermore, students are able to relate these research topics with the basic processes of psychological
stress. The selected topics can change from year to year.
 Examples are: psychological factors in the progression of cancer, chronic stress and the metabolic syndrome,
influence of prenatal stress from mother on child, psychoneuroimmunology and wound healing, medical
unexplained complaints, mental representation of pain, psychosocial factors in cardiovascular,
gastrointestinal and respiratory disease.


3. Situating and critically evaluating research on effects of stress on health
4. Developing an attitude to consult also scientific literature outside the field of Psychology(e.g., general
scientific or medical journals) and to relate these to psychological literature and models.
5. Insight into the relevance of research findings for the setup or evaluation of clinical health psychology
interventions.


Disciplines
 Psychology: Models on Behaviour & Mental processes (learning, reasoning, perception)
 Neuroscience: How does the brain function
 Medicine: How does the body function


Exam
 Written, closed book exam during exam period
 Multiple choice questions in English (with guess correction)
 The basis of the exam are:
- the slides
- 1 book chapter from Lovallo (Stress and the endocrine system, p. 115-136)
 additional literature on ULTRA/Toledo helps you to better understand the topics (so you should read it), but
it is not required for the exam (You don’t have to learn the videos)



1

,content
1. psychophysiology of stress
 homeostatic regulation
 central integration of the psychological stress response
 endocrine stress response (self-study)
 psychoneuroimmunology
2. biopsychological interactions relevant to health
 emotional and cognitive modulation of pain
 biopsychosocial aspects of asthma
 biopsychosocial aspects of COPD
 positive psychology
 biopsychosocial aspects of dyspnea
 physical activity
 gastrointestinal disorders



PSYCHOPHYSIOLOGY OF STRESS
HOMOSTATIC REGULATION
Chapter 3: Stress & Health. Biological and psychological interactions – Lovallo

1. INTRODUCTION

 Organism’s ability to keep its internal environment stable, despite changes in the external environment
- e.g., temperature, blood pH, oxygen pressure, blood glucose
 Central nervous system = Interface for interaction with external environment
 ‘Stress’ = threat to homeostasis, the power to bring
this balance out of balance
- Stressor: something of outside
o Physical (e.g. cold)
o Psychological (e.g. anticipation of pain like
seeing a knife, exam)
- Compensatory stress response: to get the
balance back
 Physical vs Psychological Stress?
- They are both posing the homeostatic threat,.
Both stressor act at the same systems.




2

,2. HOMEOSTASIS

2.1. feedback control
 Temperature
When it is hot outside the
body temperature rises a little
bit. Our nervous system detect
that and signal that to our
blood vessels in the skin, that
they should dilate: to have
more blood flow and give a
signal to sweat. So the body
can give away heat to his
environment. The same
happens when it is could
outside. Our body will stop
sweating and our blood
vessels will constrict so we
have less blood flow. Here we
will conserve our body
temperature. If that shouldn’t
be enough our body can let
our muscle to contract, that is
when you shivers.


 Blood pressure
High blood pressure isn’t good. We have baroreceptor that can
detect changes in the pressure of our blood of the arteria. That
is send by the glossopharyngeal nerve to the medulla of the
brain stem. From their signals are send to the heart to adjust
the heart rate and also the blood pressure.




 Blood pH levels/ arterial carbon dioxide pressure (PaCO2)
When we breath in a normal sitting
condition the levels are in a normal
range. When some starts to
hyperventilate, you breath faster and
you breath more CO2 out of your body.
The blood pH levels increase, that signal
sends to our brain stems that leads as an
answer to decrease stimulating of the
respiratory centres. That reduces the
stimulating of our breathing muscles and
as a result ventilating reduces and blood
levels of CO2 increase. The blood pH level
will be back his normal range. In the
other way it would give the same
homeostatic result, the opposite will
happen.



3

,2.2. feedforward control
 Perturbations are being anticipated & corrected before they occur . The body has learned that something is
going to happen and does already something to prevent.
 Classical conditioning as a viable mechanism
 e.g., “Exercise Hyperpnea” Increases in ventilation and heart rate occur at the onset of physical exercise,
even before an increase in PaCO2. When you start to jog, your body notice and before you have big changes
in your blood level, your body will already start to breath faster and so on.


3. HIERARCHY OF HOMEOSTATIC CONTROLS

3.1. intrinsic control mechanisms
Vital organs and local reflexes
 don’t need a lot of extra input of higher systems
 Organ adapts its functioning on its own in response to slow, local changes
 Example: Frank Starling Mechanism
- If returning (venous) blood volume increases then atrium chambers fill more before next beat
- more effective filling of atria creates more wall stretch and more muscle fiber tension
- more vigorous contraction on next beat
- left ventricle empties more completely
- more effective blood flow into aorta
 Heart responses to flow demands caused by systemic circulation
 Only possible when conditions are relatively stable: if you just start to stand up, this mechanism will not be
enough, only for small changes.


3.2. autonomic control mechanisms
Brainstem controls  autonomic messages
We have a neuron with a cell body, nucleus,
long axon with a synapse and short
dendrites to connect to the next neuron.
This is the way how signals are transported
in out nervous system.


3.2.1. Autonomic nervous system (ANS)
 Viscera (inner organs, heart stomach
longs …): limited awareness &
voluntary control ‘AUTONOMIC’
 Negative feedback
 ANS have different components
- Sensory pathways (afferent)
upwards
- Motor pathways (efferent)
downwards
- Divisions: sympathetic (SNS), parasympathetic (PNS), (enteric)
- Reciprocal regulation of organic function: decrease/increase is different by the parasympa/sympa



4

, Each division had
- Sensory pathways from organs via ganglia to brainstem (afferent)
- 4 response components (efferent):
a) descending autonomic and pre-ganglionic fibers
(hypothalamus/brainstem intermediolateral cell column of spinal cord
b) ganglion
(relay station for as-/descending signals, also part of local regulation system/reflexes)
c) postganglionic fibers
(messages more elaborated than in preganglionic fibers)
d) neuroeffector junctions
(postganglionic fiber/receptor at target tissue, nerve impuls  motor action)
 difference by the PNS: the origin is different more cranial position and more sacral position. Secondly the
preganglion is typically very long.




5

,Sympathetic division ANS
 1:10 pre-vs postganglionic nerves
- General, broad influence on viscera: one pre ganglionic nerves serves 10 post ganglion nerves
- Extensive linkages across widely distributed ganglia
- Closely integrated actions across different organs (‘in sympathy’)
 Neurotransmission:
- Acetylcholine (preganglionic)
- Norepinephrine (postganglionic): smooth muscle cells, cardiac muscles and pace maker: activating
function
- except: (a) sympathetic preganglionic nerves release acetylcholine at adrenal medulla
 release of catecholamines (Nor-/Epinephrine) into blood
(b) sympathetic nerves release acetylcholine at sweat glands (hands, feet)
 More active during stress
- Crucial for Fight/flight responses: pupil dilate, mouth gets dry, necks and shoulder muscles tense,
epinephrine release, blood pressure rises, …


Parasympathetic (vagal) division ANS
 Ganglia more specific and nearer to target organ
 1:3 pre-vs postganglionic nerves (lower ratio)
- localized, specific actions directed at one organ
 Neurotransmission
- Acetylcholine preganglionic
- Acetylcholine (postganglionic): smooth muscle cells & cardiac muscle and pace maker: inhibitory
influence
 Less active during stress
 Supporting energy conservation, reproduction, digestion
 Vagal division: vagal nerve it is the biggest part of the parasympathetic system


Overview




6

,3.2.2. Autonomic control of heart rate
Interaction occurs by both branches of ANS
(para)sympathetic outflows to SA-node: heart rate increase/ decrease




Electrocardiogram (ECG/EKG)
 Registration of electrical activity of the
heart
 Willem Einthoven (1860 –1927) Nobel prize
medicine 1924
 PQRST wave in a certain path. P wave atria
activate, QRS ventricle activate, T wave
recovery




 Heart rate (HR)
- Expressed in ‘beats per minute’ (bpm)
- Count number of R-peaks per minute: that is the
most visible component for each heartbeat
 Heart period (HP)
- Interbeat interval (IBI) in msec, time distance
- Time between R-peaks (R-R interval)
 How can we use such a measure in relation to stress:
before, during and after exam. Before the exam about
70 bpm, during exam higher activity, after exam it is a
lot lower.




7

,Heart rate variability (HRV)




 Variability in time between to heart beats. It means that the time difference between to heart beats are
sometimes a bit longer or shorter.
 Vagal influences on SA-node occur at respiratory rhythm
- Respiratory ‘gating’ of autonomic outflow (Eckberg, 2003)
- Only vagal influences allow for such rapid fluctuations in heart rate
 Respiratory Sinus Arrhythmia (RSA)= variations in heart rate at respiratory rhythm
- inspiration: less vagal outflow, heart accelerates
- expiration: more vagal outflow, heart decelerates




8

, Time Domain Measures:
- Root Mean Square of Successive Differences (rMSSD)
- represents short term variation of heart rhythm
- rMSSD ↑ = ↑ vagal input; rMSSD ↓ = ↓ vagal input
 Frequency Domain Measures:
- Ultra low frequency (ULF): < 0.00335 Hz
(circadian rhythms, other long term changes in heart rhythm)
- Very low frequency (VLF): 0.00336-0.04 Hz
(sympathetic + vagal effects, thermo regulation, vasomotoric, …)
- Low frequency (LF): 0.041-0.15 Hz
(tonic sympathetic + vagal effects, blood pressure regulation, …)
- High frequency (HF): 0.151-0.40 Hz
(vagal input; but not exclusively: also moderated by respiration)
 General significance of HRV: Indicates the individual flexibility of the heart activity to fit endogenous and
exogenous demands. It can better adapt. Greater HRV is associated with better mental and physical health.
HRV is a certain range, we don’t speak about extreme orders are good like in a panic attack.
 HRV (RSA) correlates with: e.g.
- Stress, depression & anxiety, Cardiac mortality, Emotional regulation, Executive functioning

HRV and mental disorders




 Groups matched on: age., sex, BMI, alcohol use
 similar level of depression across MDD groups
 no medicated patients, no individuals with comorbid physical illness
 2min resting state ECG measurement
 Reduced HRV in MDD major depressive disorder (time and frequency domain)
 Reduced HRV most pronounced in MDD + GAD with the highest psychological compatibility


HRV and cardiac disease
 Patients with cardiac disease often show comorbid major depression
 Depression associated with increased cardiac mortality  via HRV? Related?




9

,  65 CAD (coronary artery disease) patients with depression vs. 54 CAD patients without depression
 24h-ambulatory ECG monitoring
 comparable in several risk factors (eg: age, sex, echocardiographic and inflammatory parameters)
 Reduced HRV in CAD patients with major depression
 Greater autonomic dysfunction plausible mechanism linking depression to increased cardiac mortality




 311 MI (myocardial infarction) patients with depression vs. 367 MI patients without depression
 24h-ambulatory ECG monitoring after hospital discharge  followed up for 3 years
 Low HRV partially mediates the effect of depression on survival after acute MI, low survival change


HRV Biofeedback training
 HRV is changeable (but more/long-term studies required)
 Usually via slow deep breathing (approx. 6 breaths/minute)
 Potential mechanisms not fully clear, but may include:
(1)phase relationships btw. HR oscillations and breathing at specific frequencies
(2)phase relationships btw. HR and blood pressure oscillations at specific frequencies
(3) activity of the baroreflex
(4) resonance characteristics of the cardiovascular system
(5) vagal afferent signals



10
$12.54
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kirstenvangils Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
51
Member since
3 year
Number of followers
16
Documents
22
Last sold
4 weeks ago
Master studente Bio-ingenieurswetenschappen: cellular and genetics

Ik bied uitgewerkte cursusteksten aan die alle essentiële informatie op een overzichtelijke manier samenbrengen in één document. Daarnaast zijn er enkele samenvattingen en schema’s gratis beschikbaar. Om je een goed beeld te geven van mijn notities, heb ik de inhoudsopgave altijd als een apart, gratis document toegevoegd. Wil je er zeker van zijn dat je alle benodigde documenten van een vak hebt, dan kun je deze eenvoudig aanschaffen in een voordeelbundel.

Read more Read less
3.3

3 reviews

5
0
4
1
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions