100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Bio 2311 Muscle Tissue Notes

Rating
-
Sold
-
Pages
6
Uploaded on
11-09-2024
Written in
2021/2022

This is a comprehensive and detailed note on muscle for Bio 2311. *Essential Study Material!!










Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
September 11, 2024
Number of pages
6
Written in
2021/2022
Type
Class notes
Professor(s)
Prof. s. chakrabroty
Contains
All classes

Subjects

Content preview

An Introduction to Muscle Tissue
 Muscle Tissue
 A primary tissue type, divided into

Skeletal muscle

Cardiac muscle

Smooth muscle
 Skeletal Muscles
 Are attached to the skeletal system
 Allow us to move
 The muscular system

Includes only skeletal muscles
Functions of Skeletal Muscles
 Produce skeletal movement, Maintain body position, Support soft tissues, Guard openings, Maintain body
temperature, Store nutrient reserves.
Skeletal Muscle Structures
 Muscle tissue (muscle cells or fibers)
 Connective tissues
 Nerves
 Blood vessels
 Organization of Connective Tissues

Muscles have three layers of connective tissues
 Epimysium:
– exterior collagen layer
– connected to deep fascia
– Separates muscle from surrounding tissues
 Perimysium:
– surrounds muscle fiber bundles (fascicles)
– contains blood vessel and nerve supply to fascicles
 Endomysium:
– surrounds individual muscle cells (muscle fibers)
– contains capillaries and nerve fibers contacting muscle cells
– contains myosatellite cells (stem cells) that repair damage
 Muscle attachments

Endomysium, perimysium, and epimysium come together:
– at ends of muscles
– to form connective tissue attachment to bone matrix
– i.e., tendon (bundle) or aponeurosis (sheet)
 Nerves

Skeletal muscles are voluntary muscles, controlled by nerves of the central nervous system (brain and spinal cord)
 Blood Vessels

Muscles have extensive vascular systems that
 Supply large amounts of oxygen
 Supply nutrients
 Carry away wastes
Skeletal Muscle Fibers
 Are very long ; Develop through fusion of mesodermal cells (myoblasts); Become very large ; Contain hundreds of
nuclei
 Internal Organization of Muscle Fibers

The sarcolemma

The cell membrane of a muscle fiber (cell)

Surrounds the sarcoplasm (cytoplasm of muscle fiber)
 Transverse tubules (T tubules)

Transmit action potential through cell; Allow entire muscle fiber to contract simultaneously; Have same properties as
sarcolemma

 Myofibrils

Lengthwise subdivisions within muscle fiber

, 
Made up of bundles of protein filaments (myofilaments)

Myofilaments are responsible for muscle contraction

Types of myofilaments:
– thin filaments: made of the protein actin
– thick filaments: made of the protein myosin

Sarcoplasmic reticulum (SR)

A membranous structure surrounding each myofibril

Helps transmit action potential to myofibril

Similar in structure to smooth endoplasmic reticulum

Forms chambers (terminal cisternae) attached to T tubules
 Triad

Is formed by one T tubule and two terminal cisternae

Cisternae: concentrate Ca2+ (via ion pumps) , release Ca2+ into sarcomeres to begin muscle contraction

Sarcomeres
 The contractile units of muscle; Structural units of myofibrils ; Form visible patterns within myofibrils

Muscle striations
 A striped or striated pattern within myofibrils:
– Alternating dark, thick filaments (A bands) and light, thin filaments (I bands)
 Sarcomeres
 M line: the center of the A band ; at midline of sarcomere
 Z lines: the centers of the I bands; at two ends of sarcomere

Zone of overlap: the densest, darkest area on a light micrograph ; where thick and thin filaments overlap

The H Band: the area around the M line; has thick filaments but no thin filaments
 Titin: are strands of protein ; reach from tips of thick filaments to the Z line; stabilize the filaments
 Transverse tubules encircle the sarcomere near zones of overlap
 Ca2+ released by SR causes thin and thick filaments to interact
 Muscle Contraction
 Is caused by interactions of thick and thin filaments
 Structures of protein molecules determine interactions
 Four Thin Filament Proteins

F-actin (Filamentous actin) : Is two twisted rows of globular G-actin; The active sites on G-actin strands bind to
myosin

Nebulin: Holds F-actin strands together

Tropomyosin: Is a double strand; Prevents actin–myosin interaction

Troponin: A globular protein; Binds tropomyosin to G-actin; Controlled by Ca2+
 Initiating Contraction
 Ca2+ binds to receptor on troponin molecule
 Troponin–tropomyosin complex changes
 Exposes active site of F-actin
 Thick Filaments: Contain twisted myosin subunits, Contain titin strands that recoil after stretching
 The mysosin molecule- Tail: binds to other myosin molecules; Head: made of two globular protein subunits; reaches
the nearest thin filament


Myosin Action: During contraction, myosin heads
Interact with actin filaments, forming cross-bridges

Pivot, producing motion
 Skeletal Muscle Contraction
 Sliding filament theory

Thin filaments of sarcomere slide toward M line, alongside thick filaments

The width of A zone stays the same

Z lines move closer together

The process of contraction
 Neural stimulation of sarcolemma:
– causes excitation–contraction coupling
 Cisternae of SR release Ca2+:
– which triggers interaction of thick and thin filaments
– consuming ATP and producing tension
The Neuromuscular Junction

Is the location of neural stimulation

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
anyiamgeorge19 Arizona State University
View profile
Follow You need to be logged in order to follow users or courses
Sold
60
Member since
2 year
Number of followers
16
Documents
7001
Last sold
1 month ago
Scholarshub

Scholarshub – Smarter Study, Better Grades! Tired of endless searching for quality study materials? ScholarsHub got you covered! We provide top-notch summaries, study guides, class notes, essays, MCQs, case studies, and practice resources designed to help you study smarter, not harder. Whether you’re prepping for an exam, writing a paper, or simply staying ahead, our resources make learning easier and more effective. No stress, just success! A big thank you goes to the many students from institutions and universities across the U.S. who have crafted and contributed these essential study materials. Their hard work makes this store possible. If you have any concerns about how your materials are being used on ScholarsHub, please don’t hesitate to reach out—we’d be glad to discuss and resolve the matter. Enjoyed our materials? Drop a review to let us know how we’re helping you! And don’t forget to spread the word to friends, family, and classmates—because great study resources are meant to be shared. Wishing y'all success in all your academic pursuits! ✌️

Read more Read less
3.4

5 reviews

5
2
4
0
3
2
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions