100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting hoofdstuk 8 uit theorieboek van Moore & Mccabe

Rating
4.0
(1)
Sold
1
Pages
7
Uploaded on
20-11-2019
Written in
2019/2020

Samenvatting hoofdstuk 8 uit theorieboek van Moore & Mccabe

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
H8
Uploaded on
November 20, 2019
Number of pages
7
Written in
2019/2020
Type
Summary

Subjects

Content preview

STATISTIEK N

4. INFERENTIE VOOR FRACTIES




INFERENTIE VOOR ENKELE FRACTIES

 We willen een schatting van de fractie p van elementen met een of ander kenmerk onder de
elementen van een grote populatie
 We kiezen een EAS van omvang n uit de populatie en noteren het aantal ‘successen’ X
 We zullen ‘succes’ hanteren als een aanduiding voor het kenmerk dat ons interesseert
 De steekproeffractie successen ^p= X /n schat de onbekende populatiefractie p
 Als de populatie veel groter is dan de steekproef, dan zijn de individuele reacties vrijwel onafhankelijk

en heeft het aantal X bij benadering de binomiale verdeling B(n , p)
 Als de steekproefomvang klein is, moeten we toetsen en betrouwbaarheidsintervallen voor p baseren
op de binomiale verdelingen
 Als de steekproef groot is, zal zowel het aantal X als de steeproeffractie ^p bij benadering normaal zijn
verdeeld

BETROUWBAARHEIDSINTERVAL VOOR EEN ENKELE FRACTIE

 De onbekende populatiefractie p wordt geschat door de steekproeffractie ^p= X /n
 We weten dat als de steekproefomvang voldoende groot is, de grootheid ^p bij benadering de normale
verdeling heeft met verwachting μ ^p= p en standaardafwijking σ ^p=√ p (1− p)/n
 Dit betekent dat ongeveer 95% van de tijd ^p binnen 2 √ p (1− p)/n van de onbekende
populatiefractie ligt
De standaardafwijking σ ^p is afhankelijk van de parameter p
 Om een betrouwbaarheidsinterval voor p te bepalen, moeten we de standaardafwijking van ^p uit de
data schatten
o Hiervoor moeten we p vervangen door ^p in de uitdrukking voor σ ^p




BETROUWBAARHEIDSINTERVAL VAN EEN GROTE STEEKPROEF VOOR EEN POPULATIEFRACTIE
Trek een EAS van omvang n uit een grote populatie met een onbekende succesfractie p .
De steekproeffractie is ^p= X /n waar X het aantal successen vertegenwoordigt.




1

, De standaardfout van ^p is
^p (1− ^p )
SE ^p=
√ n
En de foutmarge voor betrouwbaarheidsniveau C is
m=z ¿ SE ^p
waar z ¿ de waarde is voor de standaard dichtheidskromme met een oppervlak C tussen −z ¿ en z ¿
Het betrouwbaarheidsinterval voor niveau C voor p is bij benadering ^p ± m
Gebruik dit interval voor de 90%, 95%, of 99% betrouwbaarheid wanneer er sprake is van minstens 15
successen en 15 missers


SIGINIFICANTIETOETSEN VOOR ÉÉN FRACTIE
 De steekproeffractie ^p= X /n is normaal verdeeld, met verwachting μ ^p= p en standaardafwijking
σ ^p=√ p (1− p)/n

SIGNIFICANTIETOETS VOOR EEN POPULATIEFRACTIE OP BASIS VAN EEN GROTE STEEKPROEF
Trek een EAS van omvang n uit een grote populatie met onbekende succesfractie p . Om de hypothese


^p− p 0
z=
H 0 : p= p0 te toetsen, berekent men de z-grootheid p0 (1−p 0)
√ n
In termen van een standaardnormale stochastische variabele Z geldt voor de benaderde
overschrijdingskans van een toets van H0 versus
H a : p > p0 ; de overschrijdijngskans is P ( Z ≥ z )


H a : p < p0 ; de overschrijdingskans is P ( Z ≤ z )


H a : p ≠ p0 ; de overschrijdingskans is 2 P(Z ≥|z|)

 Steekproef z significantietoets gebruiken als het verwachte aantal successen (n p0 ) en het verwachte

aantal missers (n ( 1− p 0 )) beide groters zijn dan 10

 Conclusie hangt niet af van de keuze van succes en mislukking
BETROUWBAARHEIDSINTERVALLEN GEVEN AANVULLENDE INFORMATIE
 Significantietoetsen voor één enkele fractie komen in de statistiek betrekkelijk zelden voor, omdat het

ongebruikelijk is een exact gespecifieerde p0 te hebben


HET BEPALEN VAN DE STEEKPROEFOMVANG
¿
 Foutmarge voor een betrouwbaarheidsinterval van niveau C voor p is m=z S E ^p




2
$7.19
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
5 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kainysomers Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
21
Member since
9 year
Number of followers
10
Documents
16
Last sold
3 year ago

4.1

8 reviews

5
1
4
7
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions