100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Management Research Methods 2 (MRM2) - Summary - University of Amsterdam (UvA)

Rating
-
Sold
6
Pages
32
Uploaded on
18-11-2019
Written in
2017/2018

All notes from the lectures and study materials summarized to optimally prepare you for the exam. Including supporting images. Management Research Methods 2 (MRM2) - Summary / Samenvatting - University of Amsterdam / Universiteit van Amsterdam - Pre-Master's in Business Administration - Pre-Master - Management Research Methods

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 18, 2019
Number of pages
32
Written in
2017/2018
Type
Summary

Subjects

Content preview

Content
Analysis of Variance................................................................................................................................. 3
Conceptual Models.............................................................................................................................. 3
Moderation...................................................................................................................................... 3
Mediation ........................................................................................................................................ 3
ANOVA ................................................................................................................................................. 4
Conditions........................................................................................................................................ 4
Hypothesis ....................................................................................................................................... 4
Test Statistics ................................................................................................................................... 5
Planned Contrast ............................................................................................................................. 9
Post-Hoc Tests ................................................................................................................................. 9
Moderation in ANOVA....................................................................................................................... 10
Factorial ANOVA ................................................................................................................................ 11
Conditions...................................................................................................................................... 11
Mean Squares ................................................................................................................................ 12
F-Test ............................................................................................................................................. 12
Partial Eta Squared (η2) ................................................................................................................. 13
Post-Hoc Tests ............................................................................................................................... 13
Regression ............................................................................................................................................. 14
Assumptions of Regression ........................................................................................................... 15
Model Testing ................................................................................................................................ 16
Categorical PV´s in regression and dummy variables ....................................................................... 18
Interpretation of β-coefficient ...................................................................................................... 19
Multicollinearity ................................................................................................................................ 20
Detecting multicollinearity ............................................................................................................ 20
Rules of thumb .............................................................................................................................. 20
Mediation .......................................................................................................................................... 21
Logistic Regression ............................................................................................................................ 24
Pseude-R2 ...................................................................................................................................... 24
Model Statistics ............................................................................................................................. 24
Coefficients .................................................................................................................................... 25
Factor Analysis (FA) ........................................................................................................................... 26
Principal Component Analysis (PCA) ............................................................................................. 26
Initial checks .................................................................................................................................. 26
Main analysis ................................................................................................................................. 27

1

, Reliability Analysis ............................................................................................................................. 29
Cronbach’s Alpha........................................................................................................................... 29
Further Analysis ............................................................................................................................. 30
References ............................................................................................................................................. 31




2

,Analysis of Variance

Conceptual Models
Conceptual models are visual representations of relations between theoretical constructs (and
variables) of interest.

Outcome variable (OV) = Dependent variable → Dependent upon other variables

Predictor variable (PV) = Independent variable → Not dependent upon other variables

Both OV’s and PV’s can have different measurement scales:

• Categorical
• Quantitative

Moderation
The proposed effect is stronger/weaker in certain settings. One variable moderates the relationship
between two other variables.

For example: “Mobile ownership only leads to higher mobile spending when there are options to pay
via mobile (not when there are no options to pay via mobile).”




Mediation
The proposed effect “goes through” another variable. One variable mediates the relationship
between two other variables.

For example: “The positive effect of mobile ownership on online mobile spending is mediated by
mobile browsing.”




3

, Rules for Conceptual Modals
• The boxes represent variables;
• Arrows represent relationships between variables;
• Arrows go from predictor variables (PV) to outcome variables (OV)

ANOVA
ANOVA is “Analysis of Variance” → Examine how much of the variance in the data can be explained
by the independent variable.

ANOVA is used to test whether statistically significant differences exist in scores on a quantitative
outcome variable, between different levels (groups) of a categorical predictor variable.

Variance: The average of the squared differences from the mean.




Conditions
(Between-subject) ANOVA is used when:

✓ Outcome Variable = Quantitative;
✓ Predictor Variable = Categorical > 2 groups;
✓ Between-subject design (Everyone participates in one experiment group only);
✓ Variance is homogenous across groups;
o Levene Statistic (H0: Variances are homogenous.)
✓ Residuals are normally distributed

Hypothesis
Hypotheses in ANOVA

H0: There is no difference in outcome variable scores between different levels of the independent
variable. → μ1 = μ2 = … = μi

H1: There is a difference in outcome variable scores between at least two levels of the independent
variable. → μ1 ≠ μ2 = … ≠ μi




4
$7.75
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
hjdeman

Get to know the seller

Seller avatar
hjdeman Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
6
Member since
6 year
Number of followers
5
Documents
1
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions