100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

_fundamentals_of_heat_and_mass_transfer___6th___solution_manual___gearteam

Rating
5.0
(2)
Sold
-
Pages
2131
Grade
A+
Uploaded on
03-09-2024
Written in
2024/2025

_fundamentals_of_heat_and_mass_transfer___6th___solution_manual___gearteam

Institution
_fundamentals_of_heat_and_mass_transfer___6th___so
Course
_fundamentals_of_heat_and_mass_transfer___6th___so











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
_fundamentals_of_heat_and_mass_transfer___6th___so
Course
_fundamentals_of_heat_and_mass_transfer___6th___so

Document information

Uploaded on
September 3, 2024
Number of pages
2131
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

PROBLEM 1.1

KNOWN: Heat rate, q, through one-dimensional wall of area A, thickness L, thermal
conductivity k and inner temperature, T1.

FIND: The outer temperature of the wall, T2.

SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions,
(3) Constant properties.

ANALYSIS: The rate equation for conduction through the wall is given by Fourier’s law,

dT T −T
q cond = q x = q ′′x ⋅ A = -k ⋅ A = kA 1 2 .
dx L

Solving for T2 gives

q cond L
T2 = T1 − .
kA

Substituting numerical values, find

3000W × 0.025m
T2 = 415$ C -
0.2W / m ⋅ K × 10m2

T2 = 415$ C - 37.5$ C


T2 = 378$ C. <
COMMENTS: Note direction of heat flow and fact that T2 must be less than T1.

, PROBLEM 1.2
KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.
FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from
-15 to 38°C.
SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3)
Constant properties, (4) Outside wall temperature is that of the ambient air.
ANALYSIS: From Fourier’s law, it is evident that the gradient, dT dx = − q′′x k , is a constant, and
hence the temperature distribution is linear, if q′′x and k are each constant. The heat flux must be
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends
only weakly on temperature. The heat flux and heat rate when the outside wall temperature is T2 = -15°C
are

q′′x = − k
dT
=k
T1 − T2
= 1W m ⋅ K
25$ C − −15$ C
= 133.3W m 2 .
( ) (1)
dx L 0.30 m

q x = q′′x × A = 133.3 W m 2 × 20 m 2 = 2667 W . (2) <
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of ambient temperature, -15
≤ T2 ≤ 38°C, with different wall thermal conductivities, k.

3500


2500
Heat loss, qx (W)




1500


500


-500


-1500
-20 -10 0 10 20 30 40

Ambient air temperature, T2 (C)

Wall thermal conductivity, k = 1.25 W/m.K
k = 1 W/m.K, concrete wall
k = 0.75 W/m.K


For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearily from +2667 W to -867 W and is zero
when the inside and ambient temperatures are the same. The magnitude of the heat rate increases with
increasing thermal conductivity.
COMMENTS: Without steady-state conditions and constant k, the temperature distribution in a plane
wall would not be linear.

, PROBLEM 1.3
KNOWN: Dimensions, thermal conductivity and surface temperatures of a concrete slab. Efficiency
of gas furnace and cost of natural gas.
FIND: Daily cost of heat loss.
SCHEMATIC:




ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties.
ANALYSIS: The rate of heat loss by conduction through the slab is

T −T 7°C
q = k ( LW ) 1 2 = 1.4 W / m ⋅ K (11m × 8 m ) = 4312 W <
t 0.20 m

The daily cost of natural gas that must be combusted to compensate for the heat loss is

q Cg 4312 W × $0.01/ MJ
Cd = ( ∆t ) = ( 24 h / d × 3600s / h ) = $4.14 / d <
ηf 0.9 ×106 J / MJ
COMMENTS: The loss could be reduced by installing a floor covering with a layer of insulation
between it and the concrete.

, PROBLEM 1.4

KNOWN: Heat flux and surface temperatures associated with a wood slab of prescribed
thickness.

FIND: Thermal conductivity, k, of the wood.

SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: Subject to the foregoing assumptions, the thermal conductivity may be
determined from Fourier’s law, Eq. 1.2. Rearranging,

L W 0.05m
k=q′′x = 40
T1 − T2 m2 ( 40-20 ) C

k = 0.10 W / m ⋅ K. <
COMMENTS: Note that the °C or K temperature units may be used interchangeably when
evaluating a temperature difference.

Reviews from verified buyers

Showing all 2 reviews
1 year ago

1 year ago

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Verifiedtestbanks Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
245
Member since
2 year
Number of followers
62
Documents
4517
Last sold
10 hours ago
TEST BANKS AND ALL KINDS OF EXAMS SOLUTIONS

TESTBANKS, SOLUTION MANUALS &amp; ALL EXAMS SHOP!!!! TOP 5_star RATED page offering the very best of study materials that guarantee Success in your studies. Latest, Top rated &amp; Verified; Testbanks, Solution manuals &amp; Exam Materials. You get value for your money, Satisfaction and best customer service!!! Buy without Doubt..

4.8

1037 reviews

5
928
4
71
3
24
2
9
1
5

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions