Functions Summary
The Basic Graphs and the Effect of Parameters
The Straight Line
y x y ax p
‘a’ changes the gradient of the graph; p shifts the graph up or down and is the y intercept
The Parabola:
y x 2
y ax 2 ' a 'stretches the graph a 0min value a 0max value
2
y ax q q shifts the graph up (q 0)or down ( q 0)by q units TP = y int = (0 ;q )
2
y ax bx c Standard Form with y cut c
y a ( x p )2 q Turning Point FormT P ( p; q ) The graph of y x 2 has shifted p units to theleft or right
y ( x 2)2 shifts y x 2 2 units to the right and y ( x 2) 2 shifts y x 2 2 units to the left
y a ( x x1 )( x x2 ) Factorised Form with x cuts x1 and x2
Domain : x Range: , y minum value or y maximum vlaue
b (x x )
Axis of symmetry: x or x p if y a( x p) 2 q or x 1 2 if x intercepts are given
2a 2
The Hyperbola
1
y
x
a
y a moves hyperbola away from the point closest to the origin
x
If a 0 hyperbola lies in Quads1 and 3 If a 0,hyperbola lies in quads 2 and 4
x 0 and y 0 are the horizontal and vertical asymptotes
a a
y q y q is the vertical asymptote (hyperbola y has moved up q units)
x p x
x p is the horizontal asymptote
Domain : x R x p Range : y , y q
Axes of symmetry:
a
y x and y x for y
x
a
y ( x p) q and y ( x p ) q for y q
x p
The Basic Graphs and the Effect of Parameters
The Straight Line
y x y ax p
‘a’ changes the gradient of the graph; p shifts the graph up or down and is the y intercept
The Parabola:
y x 2
y ax 2 ' a 'stretches the graph a 0min value a 0max value
2
y ax q q shifts the graph up (q 0)or down ( q 0)by q units TP = y int = (0 ;q )
2
y ax bx c Standard Form with y cut c
y a ( x p )2 q Turning Point FormT P ( p; q ) The graph of y x 2 has shifted p units to theleft or right
y ( x 2)2 shifts y x 2 2 units to the right and y ( x 2) 2 shifts y x 2 2 units to the left
y a ( x x1 )( x x2 ) Factorised Form with x cuts x1 and x2
Domain : x Range: , y minum value or y maximum vlaue
b (x x )
Axis of symmetry: x or x p if y a( x p) 2 q or x 1 2 if x intercepts are given
2a 2
The Hyperbola
1
y
x
a
y a moves hyperbola away from the point closest to the origin
x
If a 0 hyperbola lies in Quads1 and 3 If a 0,hyperbola lies in quads 2 and 4
x 0 and y 0 are the horizontal and vertical asymptotes
a a
y q y q is the vertical asymptote (hyperbola y has moved up q units)
x p x
x p is the horizontal asymptote
Domain : x R x p Range : y , y q
Axes of symmetry:
a
y x and y x for y
x
a
y ( x p) q and y ( x p ) q for y q
x p