100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

Rating
-
Sold
-
Pages
42
Grade
A+
Uploaded on
24-08-2024
Written in
2024/2025

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

Institution
Course

Content preview

,MAT1503 Assignment 5 (COMPLETE ANSWERS)
2024 - DUE 10 September 2024 ; 100% TRUSTED
Complete, trusted solutions and explanations.
Question 1: 12 Marks (1.1) Let U and V be the planes given by:
(2) U : λx + 5y − 2λz − 3 = 0, V : −λx + y + 2z + 1 = 0. Determine
for which value(s) of λ the planes U and V are: (a) orthogonal,
(2) (b) Parallel. (2) (1.2) Find an equation for the plane that
passes through the origin (0, 0, 0) and is parallel to the (3) plane
−x + 3y − 2z = 6. (1.3) Find the distance between the point
(−1,−2, 0) and the plane 3x − y + 4z = −2. (3)
1.1 Planes U and V
Planes:
 U:λx+5y−2λz−3=0U: \lambda x + 5y - 2\lambda z - 3 =
0U:λx+5y−2λz−3=0
 V:−λx+y+2z+1=0V: -\lambda x + y + 2z + 1 = 0V:
−λx+y+2z+1=0
a) Orthogonal Planes
To determine when two planes are orthogonal, we need to
check when their normal vectors are orthogonal.
Normal Vector of Plane U: nU=(λ,5,−2λ)\mathbf{n_U} = (\
lambda, 5, -2\lambda)nU=(λ,5,−2λ)
Normal Vector of Plane V: nV=(−λ,1,2)\mathbf{n_V} = (-\
lambda, 1, 2)nV=(−λ,1,2)

,Two vectors are orthogonal if their dot product is zero. Thus, we
compute the dot product of nU\mathbf{n_U}nU and nV\
mathbf{n_V}nV:
nU⋅nV=(λ)(−λ)+(5)(1)+(−2λ)(2)\mathbf{n_U} \cdot \mathbf{n_V}
= (\lambda)(-\lambda) + (5)(1) + (-2\lambda)(2)nU⋅nV=(λ)(−λ)
+(5)(1)+(−2λ)(2) nU⋅nV=−λ2+5−4λ\mathbf{n_U} \cdot \
mathbf{n_V} = -\lambda^2 + 5 - 4\lambdanU⋅nV=−λ2+5−4λ
Set the dot product to zero for orthogonality:
−λ2+5−4λ=0-\lambda^2 + 5 - 4\lambda = 0−λ2+5−4λ=0
Rearrange:
λ2+4λ−5=0\lambda^2 + 4\lambda - 5 = 0λ2+4λ−5=0
Solve this quadratic equation using the quadratic formula:
λ=−b±b2−4ac2a\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}
{2a}λ=2a−b±b2−4ac
Here a=1a = 1a=1, b=4b = 4b=4, and c=−5c = -5c=−5:
λ=−4±16+202\lambda = \frac{-4 \pm \sqrt{16 + 20}}
{2}λ=2−4±16+20 λ=−4±362\lambda = \frac{-4 \pm \sqrt{36}}
{2}λ=2−4±36 λ=−4±62\lambda = \frac{-4 \pm 6}{2}λ=2−4±6
Thus:
λ=22=1orλ=−102=−5\lambda = \frac{2}{2} = 1 \quad \text{or} \
quad \lambda = \frac{-10}{2} = -5λ=22=1orλ=2−10=−5
b) Parallel Planes

, For the planes to be parallel, their normal vectors must be
scalar multiples of each other:
(λ,5,−2λ) and (−λ,1,2)(\lambda, 5, -2\lambda) \text{ and } (-\
lambda, 1, 2)(λ,5,−2λ) and (−λ,1,2)
We need to find if there exists a scalar kkk such that:
(λ,5,−2λ)=k(−λ,1,2)(\lambda, 5, -2\lambda) = k(-\lambda, 1, 2)
(λ,5,−2λ)=k(−λ,1,2)
Equating components, we get:
λ=−kλ\lambda = -k\lambdaλ=−kλ 5=k5 = k5=k −2λ=2k-2\lambda
= 2k−2λ=2k
From 5=k5 = k5=k, substitute kkk into −2λ=2k-2\lambda =
2k−2λ=2k:
−2λ=2⋅5-2\lambda = 2 \cdot 5−2λ=2⋅5 −2λ=10-2\lambda =
10−2λ=10 λ=−5\lambda = -5λ=−5
Substitute λ=−5\lambda = -5λ=−5 into λ=−kλ\lambda = -k\
lambdaλ=−kλ:
−5=−k(−5)-5 = -k(-5)−5=−k(−5) −5=5k-5 = 5k−5=5k k=−1k = -
1k=−1
The value λ=−5\lambda = -5λ=−5 satisfies the parallel condition
with k=−1k = -1k=−1.
1.2 Equation for Plane Parallel to Given Plane

Connected book

Written for

Institution
Course

Document information

Uploaded on
August 24, 2024
Number of pages
42
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
THEBLAZE1 Chamberlain College Nursing
Follow You need to be logged in order to follow users or courses
Sold
700
Member since
1 year
Number of followers
173
Documents
1066
Last sold
1 week ago

3.6

109 reviews

5
47
4
16
3
21
2
9
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions