100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Discrete Mathematics (Classic Version) 5th Edition John A. Dossey SOLUTION

Rating
-
Sold
-
Pages
136
Grade
A+
Uploaded on
20-08-2024
Written in
2024/2025

1 An Introduction to Combinatorial Problems and Techniques 1 1.1 The Time to Complete a Project . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AMatching Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 A Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Algorithms and Their Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 4 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Sets, Relations, and Functions 6 2.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Partial Ordering Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Coding Theory 14 3.1 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 The RSAMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Error-Detecting and Error-Correcting Codes . . . . . . . . . . . . . . . . . . 17 3.5 Matrix Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 Matrix Codes That Correct All Single-Digit Errors . . . . . . . . . . . . . . . 19 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iii Table of Contents 4 Graphs 22 4.1 Graphs and Their Representations . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Paths and Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Shortest Paths and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Coloring a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Directed Graphs andMultigraphs . . . . . . . . . . . . . . . . . . . . . . . . 30 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Trees 36 5.1 Properties of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5 Binary Trees and Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.6 Optimal Binary Trees and Binary Search Trees . . . . . . . . . . . . . . . . . 51 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Matching 63 6.1 Systems of Distinct Representatives . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Matchings in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 AMatching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4 Applications of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.5 The HungarianMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7 Network Flows 68 7.1 Flows and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.2 A Flow Augmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3 TheMax-FlowMin-Cut Theorem . . . . . . . . . . . . . . . . . . . . . . . . 73 7.4 Flows andMatchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 iv Table of Contents 8 Counting Techniques 78 8.1 Pascal’s Triangle and the Binomial Theorem . . . . . . . . . . . . . . . . . . 78 8.2 Three Fundamental Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.3 Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.4 Arrangements and Selections with Repetitions . . . . . . . . . . . . . . . . . 79 8.5 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.6 The Principle of Inclusion-Exclusion . . . . . . . . . . . . . . . . . . . . . . . 81 8.7 Generating Permutations and r-Combinations . . . . . . . . . . . . . . . . . 82 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9 Recurrence Relations and Generating Functions 84 9.1 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 9.2 TheMethod of Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.3 Linear Difference Equations with Constant Coefficients . . . . . . . . . . . . 91 9.4∗ Analyzing the Efficiency of Algorithms with Recurrence Relations . . . . . . 94 9.5 Counting with Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 99 9.6 The Algebra of Generating Functions . . . . . . . . . . . . . . . . . . . . . . 100 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10 Combinatorial Circuits and Finite State Machines 105 10.1 Logical Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 10.2 Creating Combinatorial Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 107 10.3 KarnaughMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 10.4 Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Show more Read less
Institution
Discrete Mathematics
Course
Discrete Mathematics











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Discrete Mathematics
Course
Discrete Mathematics

Document information

Uploaded on
August 20, 2024
Number of pages
136
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
NURSEREN Harvard University
View profile
Follow You need to be logged in order to follow users or courses
Sold
186
Member since
1 year
Number of followers
42
Documents
557
Last sold
4 days ago

3.4

19 reviews

5
8
4
2
3
4
2
0
1
5

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions