3. Moleculaire diagnostiek
1. Analysemethoden voor nucleïnezuren: cytogenetische onderzoeksmethoden
Karyotypering = de chromosomenkaart waar alle chromosomen op gerangschikt zijn
→ Hoe bekomt men dit?
Meestal wordt het op perifere bloedmonocyten (PBMC) gedaan
→ Kan ook op beenmerg, geweekte huidfibroblasten, cellen van vruchtwater of
chorionvilli (uitsteeksels van de placenta)
Proces:
1) Er wordt 5 – 10mL bloed afgenomen in een heparine buisje
2) Er wordt fytohemagglutinine (een hormoon) aan de cellen toegevoegd
→ Gevolg: de T-lymfocyten worden gestimuleerd om te delen
3) Na 48 – 72u wordt er colchicine toegevoegd
→ Colchicine interfereert met de vorming van de spoeldraden
→ Gevolg: de celdeling wordt gestopt in de metafase (of vroeger voor een betere
resolutie (tussen profase en metafase))
4) Er wordt een hypotone oplossing aan de cellen toegevoegd
→ Gevolg: de cellen zwellen op + de individuele chromosomen worden gescheiden
5) Fixatie op een microscoopglaasje + Giemsa kleuring
→ Met een lichtmicroscoop worden de cellen bekeken
Voor routine karyotypering wordt gebruik gemaakt van een Giemsa kleuring
→ G-banding of Giemsa banding = de karakteristieke alternerende lichte en donkere bandjes van een
chromosomenpaar
➔ De donkerere bandjes:
- Bevatten relatief weinig actieve genen
- Zijn A-T rijk
- Repliceren laat in de S-fase
➔ De lichte bandjes:
- Bevatten ± 80% van de actieve genen (waaronder alle huishoudgenen)
- Zijn relatief G-C rijk
- Repliceren vroeg in de S-fase
De flow karyotypering heeft een betere resolutie
→ ➔ Chromosomen gekleurd met een fluorescerende
kleurstof passeren de laserstraal van een flow cytometer
→ De lichtverstrooiing wordt opgenomen door een
photomultiplier tube (PMT)
➔ Hoe groter het chromosoom, hoe groter het signaal
➔ Het gemiddelde van elke piek = de relatieve DNA
inhoud van een bepaald chromosomenpaar
➔ Het oppervlak onder elke piek = het relatief aantal
chromosomen in elke groep
➔ Om variatie in individuele chromosomen na te
gaan + voor identificatie van chromosoomafwijkingen
,2. Analysemethoden voor nucleïnezuren: moleculaire onderzoeksmethoden
Voor moleculaire onderzoeksmethoden moet DNA en RNA geïsoleerd worden uit materiaal van de
patiënt die wordt gebestudeerd
➔ Bij moleculaire onderzoeksmethoden zijn geen delende cellen nodig → handig!
Isolatie van mRNA:
➔ De meeste mRNA’s bezitten een poly(A)-staart aan het 3’-uiteinde
→ Dit kan men gebruiken om via een poly(T)-oligonucleotide de mRNA’s
op te vissen
---> De poly(T)-staarten worden gekoppeld op magnetische beads om
de isolatie te verbeteren
➔ mRNA wordt geïsoleerd om het expressiepatroon van 1 cel- of weefseltype
te bestuderen
→ Het transcriptoom = de volledige set mRNA van 1 cel of 1 weefseltype
➔ De bekomen pure mRNA kan gemeten worden met een spectrofotometer
of gescheiden worden met een gelelektroforese
Isolatie van RNA:
➔ Organische extractie:
Het staal wordt in een fenoloplossing gebracht en gecentrifugeerd
➔ RNA’se-vrij werken + het gebruik van RNA’se-remmers is noodzakelijk
→ RNA’se zit op onze handen en breekt RNA af
---> Daarom handschoenen dragen!
Isolatie van DNA:
Via denaturatie en extractie
→ M.b.v. zouten worden eiwitten gedenatureerd en hoogmoleculaire nucleïnezuren in
oplossing gehouden
---> Nadien wordt ijskoude ethanol toegevoegd om het DNA te doen neerslaan
---> Deze opeenvolging van stappen noemt men ‘differentiële precipitatie’
Door adsorptie op silicadeeltjes waaraan DNA blijft plakken
Door filtratie over een semi-permeabel membraan
DNA en RNA vertonen significante UV-absorptie bij 260nm
Eiwitten hebben een optimale absorptie bij 280 nm
➔ De verhouding A260nm/A280nm geeft informatie over de zuiverheid van een
nucleïnezuurpreparaat
, M.b.v. fluorescerende DNA- en RNA-kleurstoffen kan de concentratie van DNA in een oplossing
gemeten worden
➔ De meest bekende kleurstof is ethidiumbromide (EtBr)
→ Dit is kankerverwekkend en kruipt tussen DNA-moleculen
→ Alternatieve kleurstof: SYBR green
---> Dit kruipt ook tussen DNA-moleculen maar is vele veiliger dan EtBr
DNA- en RNA-moleculen kunnen d.m.v. gelelektroforese worden gescheiden
➔ Door de negatief geladen fosfaatgroepen bewegen nucleïnezuren zich bij neutrale/basische
pH in een elektrisch veld altijd naar de positieve pool
➔ De migratiesnelheid is afhankelijk van:
➢ Het type gelmatrix → agarose matrices of polyacrylamide matrices (betere resolutie)
➢ De grootte van de poriën
➢ De moleculaire afmetingen van het nucleïnezuur
➢ De conformatie van het nucleïnezuur
➔ Agarose wordt geïsoleerd uit zeewier
→ Hoe hoger de concentratie, hoe fijnmaziger het netwerk en hoe moeilijker nucleïnezuren
in de agarosegel kunnen migreren
DNA-gelelektroforese:
➔ Links: de lengtemarker
➔ Midden: DNA dat geknipt is met 3 verschillende restrictie-enzymen
➔ Rechts: controle DNA → is niet geknipt!
RNA-gelelektroforese:
➔ De 28S en 18S rRNA bandjes zijn zichtbaar
➔ Staal 1 en 2 zijn de beste stalen!
➔ gDNA = genomisch DNA
→ Als je met RNA werkt wil je geen DNA meer dus staal 5 is
een slecht staal
➔ Witte bandjes = rRNA (ribosomaal RNA)
→ De ‘smeer’ ertussen zijn allerlei lengtes van mRNA
➔ Staal 3 is een voorbeeld van gedegradeerd RNA met een RNA
smeer onder de 28S en 18S rRNA bandjes
➔ Staal 4 is een voorbeeld van RNA degradatie die resulteert in
verlies van de 28S rRNA band en een opstapeling van
gedegradeerd RNA onderaan de gel
1. Analysemethoden voor nucleïnezuren: cytogenetische onderzoeksmethoden
Karyotypering = de chromosomenkaart waar alle chromosomen op gerangschikt zijn
→ Hoe bekomt men dit?
Meestal wordt het op perifere bloedmonocyten (PBMC) gedaan
→ Kan ook op beenmerg, geweekte huidfibroblasten, cellen van vruchtwater of
chorionvilli (uitsteeksels van de placenta)
Proces:
1) Er wordt 5 – 10mL bloed afgenomen in een heparine buisje
2) Er wordt fytohemagglutinine (een hormoon) aan de cellen toegevoegd
→ Gevolg: de T-lymfocyten worden gestimuleerd om te delen
3) Na 48 – 72u wordt er colchicine toegevoegd
→ Colchicine interfereert met de vorming van de spoeldraden
→ Gevolg: de celdeling wordt gestopt in de metafase (of vroeger voor een betere
resolutie (tussen profase en metafase))
4) Er wordt een hypotone oplossing aan de cellen toegevoegd
→ Gevolg: de cellen zwellen op + de individuele chromosomen worden gescheiden
5) Fixatie op een microscoopglaasje + Giemsa kleuring
→ Met een lichtmicroscoop worden de cellen bekeken
Voor routine karyotypering wordt gebruik gemaakt van een Giemsa kleuring
→ G-banding of Giemsa banding = de karakteristieke alternerende lichte en donkere bandjes van een
chromosomenpaar
➔ De donkerere bandjes:
- Bevatten relatief weinig actieve genen
- Zijn A-T rijk
- Repliceren laat in de S-fase
➔ De lichte bandjes:
- Bevatten ± 80% van de actieve genen (waaronder alle huishoudgenen)
- Zijn relatief G-C rijk
- Repliceren vroeg in de S-fase
De flow karyotypering heeft een betere resolutie
→ ➔ Chromosomen gekleurd met een fluorescerende
kleurstof passeren de laserstraal van een flow cytometer
→ De lichtverstrooiing wordt opgenomen door een
photomultiplier tube (PMT)
➔ Hoe groter het chromosoom, hoe groter het signaal
➔ Het gemiddelde van elke piek = de relatieve DNA
inhoud van een bepaald chromosomenpaar
➔ Het oppervlak onder elke piek = het relatief aantal
chromosomen in elke groep
➔ Om variatie in individuele chromosomen na te
gaan + voor identificatie van chromosoomafwijkingen
,2. Analysemethoden voor nucleïnezuren: moleculaire onderzoeksmethoden
Voor moleculaire onderzoeksmethoden moet DNA en RNA geïsoleerd worden uit materiaal van de
patiënt die wordt gebestudeerd
➔ Bij moleculaire onderzoeksmethoden zijn geen delende cellen nodig → handig!
Isolatie van mRNA:
➔ De meeste mRNA’s bezitten een poly(A)-staart aan het 3’-uiteinde
→ Dit kan men gebruiken om via een poly(T)-oligonucleotide de mRNA’s
op te vissen
---> De poly(T)-staarten worden gekoppeld op magnetische beads om
de isolatie te verbeteren
➔ mRNA wordt geïsoleerd om het expressiepatroon van 1 cel- of weefseltype
te bestuderen
→ Het transcriptoom = de volledige set mRNA van 1 cel of 1 weefseltype
➔ De bekomen pure mRNA kan gemeten worden met een spectrofotometer
of gescheiden worden met een gelelektroforese
Isolatie van RNA:
➔ Organische extractie:
Het staal wordt in een fenoloplossing gebracht en gecentrifugeerd
➔ RNA’se-vrij werken + het gebruik van RNA’se-remmers is noodzakelijk
→ RNA’se zit op onze handen en breekt RNA af
---> Daarom handschoenen dragen!
Isolatie van DNA:
Via denaturatie en extractie
→ M.b.v. zouten worden eiwitten gedenatureerd en hoogmoleculaire nucleïnezuren in
oplossing gehouden
---> Nadien wordt ijskoude ethanol toegevoegd om het DNA te doen neerslaan
---> Deze opeenvolging van stappen noemt men ‘differentiële precipitatie’
Door adsorptie op silicadeeltjes waaraan DNA blijft plakken
Door filtratie over een semi-permeabel membraan
DNA en RNA vertonen significante UV-absorptie bij 260nm
Eiwitten hebben een optimale absorptie bij 280 nm
➔ De verhouding A260nm/A280nm geeft informatie over de zuiverheid van een
nucleïnezuurpreparaat
, M.b.v. fluorescerende DNA- en RNA-kleurstoffen kan de concentratie van DNA in een oplossing
gemeten worden
➔ De meest bekende kleurstof is ethidiumbromide (EtBr)
→ Dit is kankerverwekkend en kruipt tussen DNA-moleculen
→ Alternatieve kleurstof: SYBR green
---> Dit kruipt ook tussen DNA-moleculen maar is vele veiliger dan EtBr
DNA- en RNA-moleculen kunnen d.m.v. gelelektroforese worden gescheiden
➔ Door de negatief geladen fosfaatgroepen bewegen nucleïnezuren zich bij neutrale/basische
pH in een elektrisch veld altijd naar de positieve pool
➔ De migratiesnelheid is afhankelijk van:
➢ Het type gelmatrix → agarose matrices of polyacrylamide matrices (betere resolutie)
➢ De grootte van de poriën
➢ De moleculaire afmetingen van het nucleïnezuur
➢ De conformatie van het nucleïnezuur
➔ Agarose wordt geïsoleerd uit zeewier
→ Hoe hoger de concentratie, hoe fijnmaziger het netwerk en hoe moeilijker nucleïnezuren
in de agarosegel kunnen migreren
DNA-gelelektroforese:
➔ Links: de lengtemarker
➔ Midden: DNA dat geknipt is met 3 verschillende restrictie-enzymen
➔ Rechts: controle DNA → is niet geknipt!
RNA-gelelektroforese:
➔ De 28S en 18S rRNA bandjes zijn zichtbaar
➔ Staal 1 en 2 zijn de beste stalen!
➔ gDNA = genomisch DNA
→ Als je met RNA werkt wil je geen DNA meer dus staal 5 is
een slecht staal
➔ Witte bandjes = rRNA (ribosomaal RNA)
→ De ‘smeer’ ertussen zijn allerlei lengtes van mRNA
➔ Staal 3 is een voorbeeld van gedegradeerd RNA met een RNA
smeer onder de 28S en 18S rRNA bandjes
➔ Staal 4 is een voorbeeld van RNA degradatie die resulteert in
verlies van de 28S rRNA band en een opstapeling van
gedegradeerd RNA onderaan de gel