100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Class notes Calculus III

Rating
-
Sold
-
Pages
54
Uploaded on
07-08-2024
Written in
2023/2024

Class Notes taken by independent study following traditional Calculus III course

Institution
Calculus
Course
Calculus











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Calculus
Course
Calculus

Document information

Uploaded on
August 7, 2024
Number of pages
54
Written in
2023/2024
Type
Class notes
Professor(s)
Professor leonard
Contains
Calculus iii

Subjects

Content preview

Introduction
to Vectors
-Vectors have both a speed and a direction . * Vector i W/ initial point at the
origin ,
and

↳ "Speed" Magnitude of the terminal at P(v, va) called
given by length
: the rector
. a point is a
,




position rector of PCV , Va) and is shown [V , Va]
-Vectors system
are
mapped on a coordinate
*
Any vector can be translated into a
position vector
.




Example
to do this :

B Vector : v = AB Suppose two points are
given
4 3X
,
,
%) is PlXa 2) ,




O




(xz
A
,
is ")
>
u = PP = - x
,,
+2 +
8
slope :
Ye
2
rectori : = [D (12) ( 2) Length /magnitude) :
> .




↳ IIv/l 1 V =
D I

theorem
I 1 1 1 1 I I
(pythagorean
I




Can multiply by a constant :
Scalars v: Slope-5 Kill ,
=
2s =
-



Change the length of the rector (magnitude) W :
Slop = Kill : S : 25 = 29
-
Reverse the "direction" of the vector
. v =
[




i 38

A faster Find the vector of both
way position
:

.






#king with position
rectors



-v =, a
Y
·
-
T
⑤ ,




+ 5 =
19 06 ,
,,
9.36 / ,

-


Scalar multiples are Parallel
For scalar
,
C V . =
XC . V
,
C .


Vay
Adding subtracting
-and rectors

Examplea =
< 1
,
2) ,
5 13 1) =

,




↑ o N &

W
* vo = 00
&



2 2) 72 4)
= (2 - -
1
,
2 . =
,



a =5 1 103 201) 12 37
Y
= - =

, ,



* a b 1 1 3 2 1) 1 4 1)
- =
-
-



,
- = -



,

& &
1125 51 (2 103 2 201) <1 5) 526
+ = . -



,
.
=
,
=




(parallelagrum law)
* -
To

*
& *
* v - w = vb) w)-

,2




Un
Vectors
A rector with a length of
↳ Divide
position vector by it's a 34645 5 45 2j Find & where llill
magnitude 3
=
a =
·
=
,

i
↳ Unit vector : =

Full and //2 -
35



Sooo ...
= Kill ·, therefore ,
i denotes the direction .
2 - 35 = c = (2 . -
3 -
3 1 .




,
2 4 .
-

3 .

2) =
79 27 ,



i = -



94625

1) 11011 Strjoi 2 90 2)
-




i = (3 + = = 2 =
,




u = 1) = < b) ,



v =
3 -
94 2j)
v [ ,t)
i = - = -
magnitude want change simply
,



distribute the
negative.



= cosET o
SinGy
in

&
Mandard Basis Vectors Find i such that I ill = 9




i =
X 1 8) (x direction) in
T


78
i
T
and makes
Th

- with the
an


x-axis
angle of



.

,

cost
3
I




j
=
<0 17 (y direction)
,


u =
cost sinTy = 524022
v =
<V ,, k) =
[v 0700 v = , ,
u = 9(50zj)
=
<1 07 o va/O 1
v
, , ,


Y v
TbV]
=




i
, Y
,




Example v = <3 ,2)
F E n = -
(E ,+ E))

2LB
- I
i = 34 -



25 w



· = (3 ,
-
2)
,
5 (2 =
,
6) ,
i = 4 1) ,
~ = cost + sin (0 = =
j) .
2 =
2y
F - 1E 1) (cost o sinj) 1 11) Ei
=

,
= -



,
-



Ei)
SBV : =
34 -


2y ,
b =
9i -

6 ,
i =
35 F IE1l(cos =sin j) 1 (l) Ei
= =
-
-


i)
Slope : ma =
-E ,
mi
=
-Ez me (parallel rectors)
I
=




Mayn : Hall = 53
,
11511 = , Hell +
2j = + [ -
11E , 1)( 2 Si) 11 =(1) Si ti))
-
-
-




a + 5 + E 2 =
I
* If vectors shee the same i they will be

Wo = E llllll
,
-




parallel . ,



↳ All rectors sealed multiples
are
just a



(scaler multiples) of a certain unit reator. = 2I ,



5 = 3 i =

lol=S
,




11 11 ,
:
E
4llE211 : 4 -
IIE11 / =

,3



(11)
Using
Vectors #ample 2x2 + 2+ = = 2z' bx -

4y - 22 -
1 =
0


i = 500(cos45
°
+ + Sin45j) 2x 6x +242 472z32z = 1


soomph v = 80(cos15o >
sin15oy) x -
3x -y +
y 2y + / +
zzt = 2 +
-31t
somph (x z) (y 13(z z)
-
+ - + = 4
W

~
453
radius : r = 2

725 center : (2 1 2)
,
,




Find
Example eg .
for sphere where Al2 3 4) , ,
,
B13 2 1) , ,




at opposite ends of diameter

Vectors
are a


3-D in Center will be the midpoint.
center : (E :E , )
z(x , y ,
z) ; (2 ,
3
,
4) radius : Ed(AB) S :




E) v(y z)(z E)
X

3
-




= (x -
+ -




"
·
-




Vectors
&


1-3
-




, in



*
-




Y
-




-
4
Ration
Vectors

(V ., Va v)
-




↑= V + Vai
+X ,
or =
,
, vay ,




Z
HillNussus
(noHal)
-




* Parallel rectors are
always scalar multiples .




all'd iff b =
c . a

Distance : 4
,
(X ,, % ,
z
,
) 3 .
P(Xa ya 2) , ,




Example Show : = i -



2jo5k is 11 &
d)p p.) J(x,
,
= -
x
,
) -(+ 2
-

y, )s(z - z
,
) 5 =
(3 ,
-

6
,
15) =
371 ,
-2
,
5)
Show that A (3 4 , ,
1) ,
B (4 ,
4, 6) (13
,
,
1
,
2) Parallel
form an isosceles triangle
5 =
-Y -



Ej -k =
j(i ,
2jsSi)
d(AB) 05 = = 526
Parallel
d(BC) = S = 526
d(AC) 553
:

= % So =
Example i = T -

2j ,
5 =
(2 ,
3
,
17
1. 2 -
35 =
74 -



5y -
31

Adprint :
(i 2
. 113 ll =
545 =
35

3 11-2511
. =
556 =
254

CelesSpheres (X-h) o (y 1) = (z 2)
-
>
:
-
-

= ri

Example * (2 1
, ,
6) 3 B(1 ,
4
, 5) ...
find position rector B

T = -
To
3joSE


Example v = -
-
3j - 1
,
Find i

i -
1)

, "Do
Product
110-wIl =
1 w/lollwll"- 2llwll Kill · ·

coso
↳ Adds the products of
corresponding components
of two rectors and Escalar (v w) (v w). =


"gives"
-
-


a
,




a = (a ,,
22
,
an)5 [b =

,
be ,
beY ↑N lol all t
allvIIII all -

2 %. = -

cas
· ·5 = (a )(b ) o (22) (bz)
, ,
-(a)(ba) =
c v .
w =
11 will will coso
cost
all
-




Example V = 2i -

3jdk = + +
2j - 24
cost (i)
,


& =




V. = -
26 -
60 -
2 = -
10




Note Thisworks for A
Properti-
e wou ↳ If O ,
they are
parallel
perpendicular/normal
2
. vn + ) = V . +v : w
/orthogonal
.
3 ((v) ·
v =
c(v v) - = v(c a) .




↳ If 8= they scalar
i
,
are
negative
4 .
8 . v = 0 multiples
.
5 Vor =
10/1 :
vioVou?
↳ Kell = Fr v . = Kv11 ·



Kill co
·




V W O
paallels
: = this is how to are
orthapurl.
Example ,




- = X1 ,
-
3
,
2) 0 = Y 2 4
, ,
17 ,
i = 24 -



4ybi ↑, j i
>
-

mutually ordhaguel
, ,
1


4 i k y k
0 y
= .

=
.

= -




1 % (w 2) V (0 0 2) T i R.k 1
y y
. + = .
=
= =
.
, , . -




= 06834
4
=

Example
, 0? V =
2y +
3 w X, 1 = 2)
. (v w)n 124 (0)(1) (2)(1) (3)(2) c
,
w
245048y
-

2 . = 12i = -



Cost = -
= .




Goog .

5 Toto4= Mill Iall .




.
3 Il % -All olsoll =
59-11 = 70 cost =
-J ,
cos) cost ,
63 10.




Law 1, Ei Ej k
of Cosines
Example a =
2+ -


j > 3 b = -
=




a = bo i - 2bc cosA .
II or
I?
B


yb()
C

3(34
i
a wo = i a = 2 -


j - 3 =
-
=
35
Y 3
A
? = - w a = 3 .
5 = allb
b
C 10 == 0 not
W
> .

orthogonal

110-wll =
11 wilollvll" 21lwl 1/w// cose -
:
$3.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
isaacjc08

Also available in package deal

Thumbnail
Package deal
Calculus Package
-
2 4 2023
$ 13.46 More info

Get to know the seller

Seller avatar
isaacjc08 Drake University
View profile
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
1 year
Number of followers
0
Documents
5
Last sold
1 month ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions