100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual - Digital Signal Processing: A Computer-Based Approach Fourth Edition ( Sanjit K. Mitra (Author) latest Editon

Rating
-
Sold
-
Pages
593
Grade
A+
Uploaded on
11-07-2024
Written in
2023/2024

Solution Manual Digital Signal Processing: A Computer-Based Approach Fourth Edition Sanjit K. Mitra (Author)

Institution
Digital Signal Processing: A Computer-Based Approa
Course
Digital Signal Processing: A Computer-Based Approa











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Digital Signal Processing: A Computer-Based Approa
Course
Digital Signal Processing: A Computer-Based Approa

Document information

Uploaded on
July 11, 2024
Number of pages
593
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Kylaexcell work 1 Solution Manual Digital Signal Processing: A Computer -Based Approach Fourth Edition Sanjit K. Mitra (Author) Kylaexcell work 2 0, 0,  0, 0, 0,  2 Chapter 2 2.1 (a) x1 1 = 22.85, x1 2 = 9.1396, x1  = 4.81, (b) x2 1 = 18.68, x = 7.1944, 2 x2  = 3.48. 2.2 [n] = 1,  n  0, n  0. Henceforth , [−n − 1] = 1,  n  0, n  0. n Thus, x[n] = [n] + [−n − 1]. 2.3 (a) Consider the sequence defined by x[n] =  [k]. k =− If n < 0, then k = 0 is not included in the sum and Henceforth , x[n] = 0 for n < 0. On the other hand, for n  0, k = 0 is included in the sum, and as a result, x[n] =1 for n  0. Therefore, x[n] = n [k] = 1, n  0, = [n].  k =− 0, n  0, (b) Since [n] = 1,  n  0, n  0, it follows that [n − 1] = 1,  n  1, n  1. Henc eforth , [n] − [n − 1] = 1,  n = 0, = [n]. n 0, 2.4 Recall [n] − [n − 1] = [n]. Henceforth , x[n] = [n] + 3[n − 1] − 2[n − 2] + 4[n − 3] = ([n] − [n − 1]) + 3([n − 1] − [n − 2]) − 2([n − 2] − [n − 3]) + 4([n − 3] − [n − 4]) = [n] + 2[n − 1] − 5[n − 2] + 6[n − 3] − 4[n − 4]. 2.5 (a) (b) c[n] = x[−n + 2] = {2 0 − 3  d[n] = y[−n − 3] = {− 2 7 8 − 2 1 0 − 1 5 − 4}, − 3 6 0 0},  (c) e[n] = w[−n] = {5 − 2 0 − 1 2 2 3 0 0},  (d) u[n] = x[n] + y[n − 2] = {− 4 5 1 − 2 3  − 3 1 0 8 7 − 2}, (e) v[n] = x[n]  w[n + 4] = {0 15 2 − 4 3 0  − 4 0}, (f) s[n] = y[n] − w[n + 4] = {− 3 4 − 5 0  0 10 2 − 2}, (g) r[n] = 3.5 y[n] = {21 − 10.5  − 3.5 0 2.8 24.5 − 7}. 2.6 (a) x[n] = −4[n + 3] + 5[n + 2] + [n + 1] − 2[n] − 3[n − 1] + 2[n − 3], y[n] = 6[n + 1] − 3[n] − [n − 1] + 8[n − 3] + 7[n − 4] − 2[n − 5], w[n] = 3[n − 2] + 2[n − 3] + 2[n − 4] − [n − 5] − 2[n − 7] + 5[n − 8], (b) Recall [n] = [n] − [n − 1]. Henceforth , x[n] = −4([n + 3] − [n + 2]) + 5([n + 2] − [n + 1]) + ([n + 1] − [n]) − 2([n] − [n − 1]) − 3([n − 1] − [n − 2]) + 2([n − 3] − [n − 4]) Kylaexcell work 3 h[0] + w[n] + z x[n _ 1] _ 1 11 z + w[n _ 1] _ 1 12 + z _ 1 z _ 1 x[n _ 2] 21 w[n 2] _ 22 = −4[n + 3] + 9[n + 2] − 4[n + 1] − 3[n] − [n − 1] + 3[n − 2] + 2[n − 3] − 2[n − 4], 2.7 (a) x[n] FROM the above figure it follows that y[n] y[n] = h[0]x[n] + h[1]x[n − 1] + h[2]x[n − 2]. (b) x[n] y[n] FROM the above figure we get w[n] = h[0](x[n] + 11x[n − 1] + 21x[n − 2]) and y[n] = w[n] + 12 w[n − 1] + 22w[n − 2]. we arrive at Making use of the first equation in the second y[n] = h[0](x[n] + 11x[n − 1] + 21x[n − 2]) + 12h[0](x[n − 1] + 11x[n − 2] + 21x[n − 3]) + 22h[0](x[n − 2] + 11x[n − 3] + 21x[n − 4]) = h[0](x[n] + (11 + 12 )x[n − 1] + (21 + 1211 + 22 )x[n − 2] + (1221 + 2211 )x[n − 3] + 2221x[n − 4]). (c) Figure P2.1(c) is a cascade of a first -order section and a second -order section. The input -output relation remains unchanged if the ordering of the two sections is interchanged as shown below. x[n] y[n] z _ 1 x[n-1] z _ 1 x[n-2] h[0] h[1] h[2] + + + w[n] 0.6 + u[n] + y[n+1] _ 1 _ 0.8 z z _ 1 0.3 0.4 + + w[n _ 1] z _ 1 _ 0.5 0.2 w[n _ 2] Kylaexcell work 4 The second -order section can be redrawn as shown below without changing its input - output relation. x[n] y[n] The second -order section can be seen to be cascade of two sections. Interchanging their ordering we finally arrive at the structure shown below: x[n] 0.6 _ 1 s[n] + + u[n] + _ 1 y[n+1] _ 1 z x[n _ 1] _ 1 0.3 + _ 0.8 + z u[n _ 1] _ 1 z 0.4 y[n] z x[n _ 2] 0.2 _ 0.5 z u[n _ 2] Analyzing the above structure we arrive at s[n] = 0.6x[n] + 0.3x[n − 1] + 0.2x[n − 2], u[n] = s[n] − 0.8u[n − 1] − 0.5u[n − 2], y[n + 1] = u[n] + 0.4 y[n]. FROM u[n] = y[n + 1] − 0.4 y[n]. Substituting this in the second equation we get after some algebra y[n + 1] = s[n] − 0.4 y[n] − 0.18y[n − 1] + 0.8y[n − 2]. Making use of the first equation in this equation we finally arrive at the desired input -output relation y[n] + 0.4 y[n − 1] + 0.18y[n − 2] − 0.2y[n − 3] = 0.6 x[n − 1] + 0.3x[n − 2] + 0.2 x[n − 3]. (d) Figure P2.19(d) is a parallel connection of a first -order section and a second -order section. The second -order section can be redrawn as a cascade of two sections as indicated below: x[n] y 2[n] + w[n] 0.6 + u[n] + y[n+1] _ 1 z _ 1 z _ 1 _ 0.8 z 0.3 0.4 + w[n _ 1] + z _ 1 z _ 1 _ 0.5 w[n _2] 0.2 + w[n] _ 1 _ 1 _ 0.8 z z 0.3 + w[n _ 1] + z _ 1 z _ 1 _ 0.5 w[n _2] 0.2

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kylaexcell West Virgina University
View profile
Follow You need to be logged in order to follow users or courses
Sold
991
Member since
2 year
Number of followers
291
Documents
957
Last sold
6 days ago

KYLAEXCELL. The place to get all documents you need in your career Excellence. (Exams ,Notes ,Summary ,Case ,Essay and many more documents). All the best in you study. Message me if you can not find the document you are looking for Please rate and write a review after using my materials. Thankyou in advance

3.9

111 reviews

5
58
4
19
3
14
2
6
1
14

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions