Lineaire transformaties
Lineaire transformaties
T(x) = A𝒙⃗ met 𝑥 een vector en A de transformatie die je op de vector toepast
Van IR (domein) → IRm (codomein)
n
T(x) = het beeld, het bereik = alle mogelijke te bereiken beelden terwijl codomein = de bereikte beelden
De matrix A zorgt dus voor de transformatie van een vector
Soorten transformaties (= soorten A matrices)
▪ Projectie bv van IR3 → IR2 (op xy-vlak in vb hiernaast)
▪ Afschuiving vb hierboven
▪ Kanteling
▪ Rotatie onder een hoek φ
▪ Dilatie TD(𝑥 ) = r𝑥
Eigenschappen lineaire transformatie
▪ ⃗ ) = ⃗𝟎 nul vector wordt op zichzelf afgebeeld
T(𝟎
▪ T(𝑢
⃗⃗⃗⃗1 + 𝑢 ⃗⃗⃗⃗2 ) = T(𝑢 ⃗⃗⃗⃗1 ) +T(𝑢
⃗⃗⃗⃗2 ) dus de transformatie van de som = de som van de transformaties
▪ T(𝑐𝑢 ⃗⃗⃗⃗1 ) = cT(𝑢 ⃗⃗⃗⃗1 )
▪ T(c𝒖 ⃗ + d𝒗 ⃗ ) = cT(𝒖 ⃗ ) + dT(𝒗 ⃗)
Indien niet aan voldaan: geen LINEAIRE transformatie
Surjectieve lineaire transformaties
Surjectief: elk element u heeft minstens 1 beeld v (dus kan 1 beeld of meerdere zijn)
Voor elke 𝑣 ∈ IRm bestaat er een 𝑢
⃗ ∈ IRn zodat T(𝑢
⃗)=𝑣
Is T een surjectieve lineaire transformatie?
Nagaan of elke 𝑣 ∈ IRaantal rijen een element van het bereik van T is (alle beelden samen)
Schrijf 𝑣 = T(𝑢 ⃗ en nagaan of dit stelsel een oplossing heeft voor elke 𝑣 (analoog met 𝑏⃗ uit hfst 2)
⃗ ) = A𝑢
Reduceren nr echelonvorm
Matrix moet in elke rij pivot hebben, dan is het surjectief, dus met 0’en eronder en links
Als dit niet klopt voor de laatste rij → niet alle v’s zijn een oplossing dus niet surjectief, anders wel