100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary of paper End-to-end Object Detection with Transformers

Rating
-
Sold
-
Pages
7
Uploaded on
05-07-2024
Written in
2023/2024

This is a summary of the paper End-to-end Object Detection with Transformers for the course Seminar of Computer Vision by Deep Learning in TU Delft

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
July 5, 2024
Number of pages
7
Written in
2023/2024
Type
Summary

Subjects

Content preview

End-to-end Object Detection
with Transformers
Abstract
This approach removes the need for many hand-designed components like
non-maximum suppression procedure or anchor generation DETR doesn’t need
that! The main ingredients of the new framework, called DEtection TRansformer
or DETR are a set-based global loss that forces unique predictions via bipartite
matching and a transformer encoder-decoder architecture.
Prior methods: Current object detection pipelines include hand-crafted
components like spatial anchor generation and non-max suppression (NMS).
Each of these components is tuned specifically for a given task. For example,
NMS is threshold-based and requires an IOU (intersection over union) and
confidence threshold tuning to be able to effectively discard the overlapping
bounding boxes.


Introduction
Modern detectors address this set prediction task in an indirect way, by
defining surrogate regression and classification problems on a large set of
proposals, anchors or window centers. Their performances are significantly
influenced by postprocessing steps to collapse near-duplicate predictions.




DETR directly predicts (in parallel) the final set of detections by combining a common CNN
with a transformer architecture. During training, bipartite matching uniquely assigns
predictions with ground truth boxes.


Our DEtection TRansformer predicts all objects at once, and is trained end-to-
end with a set loss function which performs bipartite matching between
predicted and ground truth objects.




End-to-end Object Detection with Transformers 1

, Compared to most previous work on direct set prediction, the main features of
DETR are the conjunction of the bipartite matching loss and transformers with
(non-autoregressive) parallel decoding.


Related Work
Set Prediction
A task where a model predicts multiple elements whose ordering is not relevant
for correctness. (Essentially predicting multiple objects in an image).
The way this is solved now however is by introducing relationship or pre
defined knowledge into the model. For instance, the predicted bounding boxes
should not overlap significantly and should cover all detected objects.
Avoiding Near-Duplicates: In object classification sometimes there are the
same bounding boxes for the same predicition, this is solved by using NMS
however set prediction is set to resolve that.

Transformers and Parallel Decoding
Transformers introduced self-attention layers, which, similarly to Non-Local
Neural Networks, scan through each element of a sequence and update it by
aggregating information from the whole sequence.

Object Detection
Set-based loss: Several object detectors used the bipartite matching loss.
Recurrent detectors: Closest to our approach are end-to-end set predictions
for object detection and instance segmentation. Similarly to us, they use
bipartite-matching losses with encoder-decoder architectures based on CNN
activation to directly produce a set of bounding boxes. These approaches,
however, were only evaluated on small datasets and not against modern
baselines. In particular, they are based on autoregressive models (more
precisely RNNs), so they do not leverage the recent transformers with parallel
decoding.


The DETR model
Object Detection set prediction loss




End-to-end Object Detection with Transformers 2
$8.67
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
guillemribes

Also available in package deal

Get to know the seller

Seller avatar
guillemribes Technische Universiteit Delft
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
11
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions