100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

BSAN 160 exam review | With complete solution | RATED A+

Rating
-
Sold
-
Pages
12
Grade
A+
Uploaded on
05-07-2024
Written in
2023/2024

BSAN 160 exam review | With complete solution | RATED A+

Institution
BSAN 160
Course
BSAN 160









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
BSAN 160
Course
BSAN 160

Document information

Uploaded on
July 5, 2024
Number of pages
12
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

BSAN 160 exam review | With complete solution | RATED A+ T IIor IIF:Decision IIsupport IIsystem IIare IIcomputer -based IIsupport IIsystems IIthat IIintegrate IIindividuals' IIexpertise IIand IIcomputer IIcapabilities, IIand IIthey IIhave IIprecise IIdefinitions IIagreed IIto IIby IIpractitioners. II- II II II IIFalse Business IIIntelligence II(BI) II- II II II IIis IIan IIumbrella IIterm IIthat IIcombines IIarchitectures, IIdatabases, IIanalytical IItools, IIapplications, IIand IImethodologies T IIor IIF: IIData IIis IIa IIcollection IIof IIobservations, IIexperiments, IIand IIexperiences IIthat IIdo IInot IInecessarily IIrepresent IIabsolute IIfacts IIthat IIare IIuniversally IItrue. II- II II II IITrue Descriptive IIAnalytics II- II II II IIhelp IImanagers IIunderstand IIcurrent IIevents IIin IIthe IIorganization IIincluding IIcauses, IItrends, IIand IIpatterns. What IItype IIof IIanalytics IIseeks IIto IIrecognize IIwhat IIis IIgoing IIon IIas IIwell IIas IIthe IIlikely IIforecast IIand IImake IIdecisions IIto IIachieve IIthe IIbest IIperformance IIpossible? II- II II II IIPrescriptive Which IIof IIthe IIfollowing IIis/are IIpredictive IIanalytics IImethod(s)? IIA)Boxplot IIB)Text IIanalysis IIC)Simulation IID)Regression IIanalysis, IIE)Clustering IIB, IID IIand IIEB, IIC IIand IIED IIand IIE II- II II II IIB, IID, IIE Using IIcharacteris tics IIof IIfirst IIyear IIundergraduate IIstudents, IIsuch IIas IIage, IIgender, IImajor, IIlocation, IIworkout/sports IIactivities, IIif IIwe IIdeveloped IIa IImodel IIto IIforecast IIwhich IIstudents IIare IIat IIrisk IIof IIdropping IIout IIafter IIthe IIfirst IIyear IIof IIcollege, IIdecided IIwhich IIstudents IIto IIreach IIout IIto IIand IIoffered IIthem IIsupport IIservices IIto IIreduce IItheir IIrisk IIof IIdropping IIout, IIwhat IIkind IIof IIanalytics IIapplication IIwould IIthis IIwork IIrepresent? II- II II II IIprescriptive IIanalytics Which IIchart IItype IIbelow IIwould IIbe IImost IIhelpful IIto IIshow IIthe IIcomparison IIbetween IIworldwide IIturnover IIrate IIcompared IIwith IItech IIsector IIturnover IIrate? Line IIchart Histogram Bar IIchart Scatterplot II- II II II IIBar IIchart Which IIchart IItype IIbelow IIwould IIbe IImost IIhelpful IIto IIshow IIthe IIrelative IIproportions IIof IIturnover IIrate IIof IIdifferent IIcategories II(e.g., IIcomputer IIgames, IIInternet, IIcomputer IIsoftware IIand IIother) IIwithin IIthe IItech IIsector IIthat IIdrive IItech IIturnover IIthe IImost? Histogram Pie IIchart Bar IIchart Scatterplot II- II II II IIPie IIChart T IIor IIF: IIOriginal II(raw) IIdata IIis IIusually IIcollected IIfrom IImultiple IIdata IIsources IIincluding IIvarious IIformats, IIand IIit IIis IIreadily IIusable IIby IIanalytics IItools IIand IIalgorithms II- II II II IIFalse T IIor IIF: IIDuring IIdata IItransformation, IIdepending IIon IIthe IIcontext IIand IIpurpose IIof IIpreprocessing IIthe IIdata IIcan IIbe IIrescaled IIto IIa IIfixed IIrange, IIand IInumeric IIvariables IIcan IIbe IIconverted IIto IIcategorical IIvariables II- II II II IITrue T IIor IIF: IIData IIreduction IIcan IIbe IIapplied IIto IIrows II(observations) IIand/or IIcolumns II(variables) IIin IIa IIgiven IIdataset II- II II II IITrue T IIor IIF: IIIn IIdata IIpreprocessing IIstep IIto IIreduce IIthe IIdimension IIof IIdata IIprior IIto IIanalysis, IIsampling IIthe IIrows IIis IImore IIcomplex IIthan IIselecting IIthe IIcolumns II(variables II- II II II IIFalse T IIor IIF: IIChoice IIof IIvisualization IImethod IIthat IImeets IIthe IIpresentation IIrequirements IIfor IIa IIgiven IIdata IIdepends IIon IIthe IIdata IItypes IIavailable, IIpurpose IIof IIthe IIvisual IIand IIcontext II- II II II IITrue Which IIof IIthe IIbelow IIis IInot IIa IIdata IIpreprocessing IIstep? data IIconsolidation data IItransformation data IIseparation data IIreduction II- II II II IIdata IIseperation Which IIof IIthe IIbelow IIis IIa IImethod IIto IIdeal IIwith IIfilling IIout IIthe IImissing IIvalues IIin IIdata? data IIcleaning data IIreduction data IIsmoothing data IIimputation II- II II II IIdata IIimputations Which IIof IIthe IIbelow IIstatement(s) IIis/are IIcorrect? A: IIAn IIimportant IIdata IItransformation IIsubtask IIis IIto IIselect IIthe IIrelevant IIdata IIusing IIdomain IIexpert IIinput, IIi.e., IIdecide IIwhich IIsources IIand IIdata IIto IIcollect. B: IIWhen IImerging IItwo IIdata IIsource IItables IIA IIand IIB, IIusing IIthe IIfull IIouter IIjoin IImethod IIeliminates IIall IIrows IIfrom IIthe IIresulting IItable IIthat IIdo IInot IIhave IIcorresponding IIrows IIin IIboth IIsource IItables IIA IIand IIB. C: IIFor IInumerical IIvariables, IInormalizing IIthe IIobserved IIvalues IIbetween IItwo IIvalues, IIsuch IIas II0 IIand II1, IIallows IIto IIrescale IIthe IIvalues IIand IIcompare IIvariables IIwith IIdifferent IImeans IIand/or IIstandard IIdeviations IIon IIa IIsingle IIscale. D: IIIdentifying IIand IIreducing IInoise IIin IIthe IIdata IIis IIa IIsubtask IIof IIdata IIreduction. II- II II II IIC When IIanalyzing IIthe IIoriginal IIdata IIof IIhousehold IIincome IIof IIa IIselected IIpopulation, IIanalysts IInotice IIthat II5% IIof IIobserva tions IIare IImissing IIand IIentered IIin IIthe IIdataset IIas IIN/A II(not IIavailable). IIFurther, IIthey IInotice IIthat IIthere IIare IIa IIfew IIextremely IIlow IIhousehold IIincome IIvalues. IIWhich IIof IIthe IIfollowing IImethod(s) IIwould IIbe IIwell-suited IIto IIprepare IIthe

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
STUVEX NURSING
View profile
Follow You need to be logged in order to follow users or courses
Sold
725
Member since
2 year
Number of followers
313
Documents
15137
Last sold
9 hours ago
STUVATE - STUVIA USA

Our store is a comprehensive destination for buying and selling a variety of documents. we offer a vast range of documents that cater to different needs and requirements, our documents are well-researched, accurate, and of high quality, ensuring customer satisfaction. whether you are looking for legal documents, academic papers, business reports or miscellaneous documents we`ve got you covered.

3.8

110 reviews

5
42
4
29
3
23
2
7
1
9

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions