100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting statistiek voor het geneesmiddelenonderzoek

Rating
-
Sold
1
Pages
22
Uploaded on
03-06-2024
Written in
2023/2024

Dit is een bondige samenvatting/formularium van statistiek. Alles (inclusief aantekeningen van de werkzittingen, maar exclusief H21) is hier in verwerkt dus hiermee kan je ook de vragen van de werkzittingen beantwoorden. Het examen is open boek dus je kan er eigen aantekeningen bij schrijven en meenemen naar het examen.

Show more Read less
Institution
Course












Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 3, 2024
File latest updated on
June 6, 2024
Number of pages
22
Written in
2023/2024
Type
Summary

Subjects

Content preview

Statistiek formularium
Enkelvoudige lineaire regressie
We fitten een lijn op basis van 2 continue variabelen (covariaten) → 𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋

Hypotheses:

• Intercept
o H0 : β0 =0
Indien β1 =0 , betekent dit ook dat R2 = 0 en dat ρ2 =0
• Richtingscoefficient
o H0 : β1 =0 Enkelvoudige lineaire regressie heeft maar 1 dummy variabele → > 1 degrees
• Populatievariantie of freedom is nooit een enkelvoudige lineaire regressie tabel
o H0 : ρ2 =0
Formules:
𝑆𝑆𝑅 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝑅2 = = =
𝑆𝑆𝑇𝑂 𝑆𝑆𝑇𝑂 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑧𝑜𝑛𝑑𝑒𝑟 𝑥 𝑖𝑛 𝑟𝑒𝑘𝑒𝑛𝑖𝑛𝑔 𝑡𝑒 𝑏𝑟𝑒𝑛𝑔𝑒𝑛
• Pearson correlatie (r) = ± √𝑅 2 (het teken van β1 = het teken van correlatie)
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑟−1) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝐹 = 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑟)
= 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑑𝑖𝑒 𝑛𝑖𝑒𝑡 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑡 𝑑𝑜𝑜𝑟 𝑥
• 𝛽0 = 𝑌 - 𝛽1 ∗ 𝑋 (indien snijpunt niet zichtbaar op figuur)




Eerst zonder x, dan met x (er blijft nog variatie over)

Stappenplan:

• Kijk naar de assen
o Klein naar groot of omgekeerd?
o Zelfde schaal op beide figuren?
• Is het snijpunt (x=0) zichtbaar op de grafiek?
o Neen → bereken rico en zo het snijpunt (𝛽0 = 𝑌 - 𝛽1 ∗ 𝑋)

,Meervoudige lineaire regressie
We fitten een vlak op basis van > 2 continue variabelen (covariaten), er moet ook
nagegaan worden of er een interactie is tussen de predictors. → Yi = β0 + β1Xi1 + β2Xi2

Zelfde hypotheses als enkelvoudige, maar voor alle β -waarden
Formules:
𝑆𝑆𝑅 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝑅 2 = 𝑆𝑆𝑇𝑂 = 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑧𝑜𝑛𝑑𝑒𝑟 𝑥 𝑖𝑛 𝑟𝑒𝑘𝑒𝑛𝑖𝑛𝑔 𝑡𝑒 𝑏𝑟𝑒𝑛𝑔𝑒𝑛
o Veel factoren → meer kans op kleinere R2 door toeval →
adjusted R2
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑟−1) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝐹 = =
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑟) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑑𝑖𝑒 𝑛𝑖𝑒𝑡 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑡 𝑑𝑜𝑜𝑟 𝑥

We kunnen het meervoudige model ook vergelijken met het enkelvoudige model door ‘x’ als het
meervoudig model te beschouwen.

Interpretatie:

• Enkelvoudige uitspraken over of X2 significante extra informatie geeft bovenop X1
o Bv. na correctie voor X2 is er geen/wel significant verband gevonden tussen X1 en Y
o Niet: er is geen significant verband tussen Y en X1 en X2




Stappenplan:

• Is het snijpunt zichtbaar op de figuur (of kan je het berekenen)?
• Kijk naar de assen → klein naar groot of omgekeerd?
• Stijgt Y wanneer X1 stijgt bij een vaste waarde voor X2?
• Stijgt Y wanneer X2 stijgt bij een vaste waarde voor X1?
• Interactie
o Wordt de positieve/negatieve helling kleiner/groter naargelang X1 stijgt? (onderkant
en bovenkant van vlak vergelijken)
▪ Ja, de negatieve helling wordt kleiner (en dus positiever) → kwadratisch
verband is positief
▪ Neen, de negatieve helling wordt groter (en dus negatiever) → kwadratisch
verband is negatief
▪ Kan ook door te herleiden naar wat rico van de dosis is (vaste waarde X1) en
verschillende waarden in te vullen → kijken of helling positiever/negatiever
wordt
• 𝛽0 = 8,91 + 0,06𝑥2
• 𝛽1 = (0,014𝑥2 − 0,46)
• 𝛽1 = (0,014 ∗ 20 − 0,46) = −0,18
• 𝛽1 = (0,014 ∗ 30 − 0,46) = −0,04

,ANOVA
We plotten een relatie tussen een onafhankelijke categorische (factor, minstens 3 groepen) en een
afhankelijke continue variabele. We weten enkel of de groepen verschillen, niet op welke manier of
welke groepen. ANOVA vermijdt het multiple testing probleem van meerdere t-testen. Een
significant ANOVA-test betekent niet automatisch dat een van de t-testen significant zou zijn want
de t-test heeft lagere power.

Hypothese:

• H0 :µ1= µ2= µ3 =µ4




ANOVA hypothese A is significant (ANOVA gezien in een MANOVA)
Formules:
𝑆𝑆𝑅 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝑅 2 = 𝑆𝑆𝑇𝑂 = 𝑆𝑆𝑇𝑂
= 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑧𝑜𝑛𝑑𝑒𝑟 𝑥 𝑖𝑛 𝑟𝑒𝑘𝑒𝑛𝑖𝑛𝑔 𝑡𝑒 𝑏𝑟𝑒𝑛𝑔𝑒𝑛
𝑀𝑆𝐶 𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑟−1) 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛/(𝑟−1) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝐹 = 𝑀𝑆𝐸 = 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑟)
= 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛/(𝑁−𝑟) = 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑑𝑖𝑒 𝑛𝑖𝑒𝑡 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑡 𝑑𝑜𝑜𝑟 𝑥

GLM:

• Hypothese test of ricos 0 zijn → = testen of gemiddelden gelijk zijn
• De referentiegroep veranderen heeft enkel effect op interpretatie, niet op p-waarden
• #dummy variabelen = # vrijheidsgraden
• Voorbeeld: factor met 4 niveaus/groepen → 3 dummy variabelen nodig → 3 vrijheidsgraden




Stappenplan:

• Is de variabiliteit gelijk in beide figuren?
o Wat is de SSbetween? Zijn de gemiddeldes hetzelfde op beide figuren?
o Verschilt de totale variabiliteit? Is er meer variabiliteit binnen de groepen op een
figuur?
o Bereken R2 = SSbetween/SStotaal (groter is beter)

,MANOVA
We plotten een relatie tussen meerdere onafhankelijke categorische (factoren, minstens 3
groepen) en afhankelijke continue variabelen. Er moet ook nagegaan worden of er een interactie is
tussen de predictors. MANOVA heeft meer power dan ANOVA, er kunnen dus significante relaties
gevonden worden in MANOVA terwijl deze niet significant waren in ANOVA ookal is het effect even
groot.

Hypothese:

• H0 :µ1= µ2= µ3 =µ4
o Zijn de gemiddelden voor alle niveaus van x1 gelijk? (gemiddelden van beide hele
kolommen)
o Zijn de gemiddelden voor alle niveaus van x2 gelijk? (gemiddelden links-links
vergelijken met gemiddelden van rechts-rechts)
o Is er interactie tussen x1 en x2? (enkel indien interactie is toegelaten)




Behandeling A is significant Behandeling B is significant Geen interactie


Formules:
𝑆𝑆𝑅 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝑅 2 = 𝑆𝑆𝑇𝑂 = 𝑆𝑆𝑇𝑂
= 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑧𝑜𝑛𝑑𝑒𝑟 𝑥 𝑖𝑛 𝑟𝑒𝑘𝑒𝑛𝑖𝑛𝑔 𝑡𝑒 𝑏𝑟𝑒𝑛𝑔𝑒𝑛
𝑀𝑆𝐶 𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑟−1) 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛/(𝑟−1) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝐹 = 𝑀𝑆𝐸 = 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑟)
= 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛/(𝑁−𝑟) = 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑑𝑖𝑒 𝑛𝑖𝑒𝑡 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑡 𝑑𝑜𝑜𝑟 𝑥

Interactie:

• Geen → som van de effecten = som van de individuele effecten → additief
• Wel → som van de effecten ≠ som van de individuele effecten → niet additief
• Grafische voorstelling interactie:
o Trek een lijn door elk niveau van een factor en herhaal dit voor de andere factoren
o Lijnen kruisen = (significante) interactie
o Als de lijnen kruisen en de interactie niet significant is, is dit gelijk aan parallelle
lijnen

, ANCOVA
We plotten een relatie tussen een continue respons en meerdere onafhankelijke categorische
(factoren, minstens 3 groepen) en continue variabelen (covariaten, zijn onafhankelijk , kunnen niet
gerandomiseerd worden en verklaren ook een deel van de variabiliteit). Het model corrigeert voor
verschillen die niet gerandomiseerd konden worden en verandert de posities van de gemiddelden
voor het geval dat alle proefpersonen dezelfde waarden hadden voor de covariaat.

➔ kleinere SSE (= SSwithin = SSresidual) → MSE kleiner → meer power voor F-test

ANCOVA is an extension of ANOVA in which main effects and interactions are assessed after
dependent variable scores are adjusted for differences associated with one or more covariates
that are measured before the dependent variable and are correlated with it.

Formules:
𝑆𝑆𝑅 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝑅2 = = =
𝑆𝑆𝑇𝑂 𝑆𝑆𝑇𝑂 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑧𝑜𝑛𝑑𝑒𝑟 𝑥 𝑖𝑛 𝑟𝑒𝑘𝑒𝑛𝑖𝑛𝑔 𝑡𝑒 𝑏𝑟𝑒𝑛𝑔𝑒𝑛
𝑀𝑆𝐶 𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑟−1) 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛/(𝑟−1) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑑𝑜𝑜𝑟 𝑥
• 𝐹 = = = =
𝑀𝑆𝐸 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑟) 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛/(𝑁−𝑟) 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑒 𝑑𝑖𝑒 𝑛𝑖𝑒𝑡 𝑣𝑒𝑟𝑘𝑙𝑎𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑡 𝑑𝑜𝑜𝑟 𝑥

Grafisch:

• Covariaat heeft geen effect → lijnen op scatterplot horizontaal (eigenlijk zelfde als ANOVA)
• Covariaat heeft effect → helling
• Covariaat verklaart alles (groepen geen effect) → rechten in elkaars verlengde
• Lijnen hebben verschillende hellingen (kruisen) → interactie




Covariaat verklaart niets covariaat verklaart variatie deels covariaat verklaart alles interactie


GLM-notatie:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Nessie81 Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
3 year
Number of followers
7
Documents
46
Last sold
1 week ago

2.3

3 reviews

5
1
4
0
3
0
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions