INTERNATIONAL SECONDARY CERTIFICATE: FURTHER STUDIES MATHEMATICS: PAPER I – Page i of iv
INFORMATION BOOKLET
INFORMATION BOOKLET
Algebra
–b ± b 2 – 4ac x ; x 0
x= x =
2a − x ; x < 0
n n
n(n + 1) n 2 n
1= n
i=1
i =
i=1 2
= +
2 2
n a (1 − r n )
Sn = 2a + ( n − 1) d Sn =
2 1− r
z = a+ bi z* = a − bi
A
ln A + ln B = ln (AB) ln A – ln B = ln
B
logb x
ln An = n ln A loga x =
logb a
Calculus
b
b−a n
b
x n+1
f ( xi ) , n −1
n
Area = lim x dx =
n → n
i=1 a n + 1 a
f(x + h) – f(x) dy dy dt
f'(x) = lim = ×
h →0 h dx dt dx
f' ( g(x)).g'(x)dx = f(g(x))+ c
f(x).g'(x)dx = f(x).g(x) − g(x).f'(x)dx + c
b
f(x )
xr +1 = xr − r V = y 2dx
f'(xr ) a
IEB Copyright © 2023 PLEASE TURN OVER
INFORMATION BOOKLET
INFORMATION BOOKLET
Algebra
–b ± b 2 – 4ac x ; x 0
x= x =
2a − x ; x < 0
n n
n(n + 1) n 2 n
1= n
i=1
i =
i=1 2
= +
2 2
n a (1 − r n )
Sn = 2a + ( n − 1) d Sn =
2 1− r
z = a+ bi z* = a − bi
A
ln A + ln B = ln (AB) ln A – ln B = ln
B
logb x
ln An = n ln A loga x =
logb a
Calculus
b
b−a n
b
x n+1
f ( xi ) , n −1
n
Area = lim x dx =
n → n
i=1 a n + 1 a
f(x + h) – f(x) dy dy dt
f'(x) = lim = ×
h →0 h dx dt dx
f' ( g(x)).g'(x)dx = f(g(x))+ c
f(x).g'(x)dx = f(x).g(x) − g(x).f'(x)dx + c
b
f(x )
xr +1 = xr − r V = y 2dx
f'(xr ) a
IEB Copyright © 2023 PLEASE TURN OVER