100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

ECON0019

Rating
-
Sold
-
Pages
40
Uploaded on
21-05-2024
Written in
2021/2022

In depth notes for ECON0019

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Unknown
Course

Document information

Uploaded on
May 21, 2024
Number of pages
40
Written in
2021/2022
Type
Class notes
Professor(s)
Dennis kristensen and aureo de paula
Contains
All classes

Subjects

Content preview

Term 1
Week 1
Simple linear regression
Conditional distributions
• E[ay+b]=aE[y]+b
• E[a(x)y+b(x) |x = a(x) E[y|x] + b(x)
• Var (y|x)= E[y²|x]- E[y|x]²
• LIE: E[y]=E[E[y|x]]

Causality, ceteris paribus, and counterfactual reasoning
• If we hold factors other than x that a ect y constant, ie. ceteris paribus, then we can conclude
that x has a causal e ect on y
• Counterfactual reasoning means considering counterfactual outcomes, the outcome that would
have occurred in one state vs the actual outcome

De nitions
y= β₀ + β₁x + u
• So, if ceteris paribus holds Δu=0 and Δy=β₁Δx
• u contains all factors a ecting y other than x

• SLR.1 Linear in parameters, y= β₀ + β₁x + u
• SLR.2 Random sampling, {xᵢ,yᵢ}, i=1,…,n are independently and identically distributed
• SLR.3 xᵢ, i=1,…,n, exhibition variations that SSTₓ= ∑(xᵢ-x̄ )²>0
• SLR.4 Zero conditional mean, E[u|x]=0
• No x conveys any information about u on average due to mean independence E[u|x]=E[u]
• Implies E[u]=0
• E[u]=LIE E[E[u|x]]=SLR.4 E[0]=0
• Implies E[ux]=0
• E[ux]=LIE E[E[ux|x]]=E[xE[u|x]]=SLR.4 E[0x]=0
• SLR.5 Homoscedasticity, Var[u|x]=σ² for all values x
• This means that any unobserved explanatory variables are uncorrelated with x

Deriving OLS
yᵢ=β₀+β₁xᵢ+uᵢ
These methods only require SLR.3 to hold

Method of moments:
Population moments:
(1a)E[u]=E[y-β₀-β₁x]=SLR.4=0
(2a)E[xu]=E[x(y-β₀-β₁x])=SLR.4=0

Sample moments:
(1) n⁻¹ ∑[yᵢ-β̂₀-β̂₁xᵢ]=SLR.4=0
• This gives 1/n [∑yᵢ-∑β̂₀-∑β̂₁xᵢ]= ȳ - β̂₀-β̂₁x̄ = 0
(2) n⁻¹∑[xᵢ(yᵢ-β̂₀-β̂₁xᵢ)]=SLR.4=0
• Substituting in gives β̂₁= n⁻¹∑(yᵢ-ȳ)xᵢ/n⁻¹(xᵢ-x̄ )xᵢ = n⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ )/n⁻¹∑(xᵢ-x̄ )²
• This is because n⁻¹∑(yᵢ-ȳ)x̄ =0 and n⁻¹∑(xᵢ -x̄ )x̄ =0

β̂₁= n⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ )/n⁻¹∑(xᵢ-x̄ )² = ρ^xy(σ̂ y/ σ̂ x)
• ρ^xy= cov(x,y)/σ̂ yσ̂ x = (n-1)⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ ) sample correlation between xᵢ, yᵢ
• σ̂ = (n-1)⁻¹ ∑(xᵢ-x̄ )² = sample standard deviations




fi ff ff ff

,Outcome:
Predicted/ tted values: ᵢ=β̂₀+β̂₁xᵢ, i=1,..,n
OLS regression line: =β̂₀+β̂₁xᵢ
Residuals: ᵢ=yᵢ- ᵢ ie. the di erence between the actual yᵢ and its tted value

Sum of squared residuals:
Under this method we seek to minimise ∑( ᵢ²) = ∑(yᵢ-β̂₀-β̂₁xᵢ)²
This yields FOC with respect to :
β̂₀: 0=-2 ∑(yᵢ-β̂₀-β̂₁xᵢ)
β̂₁: 0=-2 ∑(yᵢ-β̂₀-β̂₁xᵢ)xᵢ


Unbiasedness
OLS is unbiased under SLR.1-4

β̂₁= (a) ∑yᵢ(xᵢ-x̄ )/∑(xᵢ-x̄ )² = (b) ∑yᵢ(xᵢ-x̄ )/SSTx
(a) As ∑(xᵢ -x̄ )ȳ=0
(b) SSTx= ∑(xᵢ -x̄ )²
= SLR.1 ∑(β₀+β₁xᵢ+uᵢ)(xᵢ-x̄ )/SSTx

Working with the numerator:
∑(β₀+β₁xᵢ+uᵢ)(xᵢ-x̄ ) = β₀∑(xᵢ-x̄ ) + β₁∑(xᵢ-x̄ )xᵢ + ∑(xᵢ-x̄ )uᵢ = 0 + β₁∑(xᵢ-x̄ )xᵢ + ∑(xᵢ-x̄ )uᵢ = β₁SSTx +∑(xᵢ-x̄ )uᵢ
As ∑(xᵢ-x̄ )=0, β₀∑(xᵢ-x̄ )=0
And ∑(xᵢ-x̄ )xᵢ = ∑(xᵢ-x̄ )²

Overall:
β̂₁=β₁ +∑(xᵢ-x̄ )uᵢ/SSTx
∑(xᵢ-x̄ )uᵢ/SSTx= sampling error, the coe cient of regressing uᵢ on xᵢ
=β₁ +∑wᵢuᵢ
wᵢ= (xᵢ-x̄ )/SSTx

Conditional expectation:
E[β̂₁|X]=E[β₁ +∑wᵢuᵢ|X] = β₁ + ∑E[wᵢuᵢ|X] = β₁ + ∑wᵢE[uᵢ|X] = β₁
E[wᵢuᵢ|X]=wᵢE[uᵢ|X]=0 as E[u|X]=SLR.2E[u|x]=SLR.40, so wᵢ depends on X alone

LIE:
E[β̂₁]=E[E[β̂₁|X]]= E[β₁]=β₁


Variance of estimators
Using:
β̂₁=β₁ +∑wᵢuᵢ
That β₁ is constant so does not a ect Var(β̂₁|X)
Cov(uᵢ,uj|X)=SLR.2 and 4E[uᵢuj|xᵢ,xⱼ]=0
Var(uᵢ,|X)=SLR.2 and 5Var[uᵢ|xᵢ]= σ²

Var(β̂₁|X)=Var(β₁ +∑wᵢuᵢ|X)= ∑Var(wᵢuᵢ|X)= ∑wᵢ²Var(uᵢ|X) = ∑wᵢ²σ² = σ²∑wᵢ²
∑wᵢ²= SSTₓ/SSTₓ² =1/SSTₓ
Var(β̂₁)=σ²/SSTₓ

Variance of u
σ²= E[u²]
σ̂ ²= n⁻¹ ∑uᵢ²
As uᵢ² is unobservable we use n⁻¹ ∑uᵢ²= 1/(n-2) SSR
Standard error(β̂₁)= σ̂ /√SSTx




fi
û ŷ ŷ ŷ ff ff ffi û fi

, Variance of
Var = Var (β̂₀+β̂₁y)=Var(u)²+β̂₁²Var(Y)

Goodness of t
SST=SS= ∑(yᵢ-ȳ)² = total variation in y
SSE= ∑( ᵢ-ȳ)² = variation in y explained by x
SSR= ∑ ᵢ² = unexplained variation in y
SST=SSE+SSR

R²= SSE/SST= 1-SSR/SST = fraction of sample variation in y that is explained by x
Or, = SST total/ SST xᵢ
A larger R shows a better t of OLS line
Note- (n-1)⁻¹ SST= σ ²^y
Note- causality is about whether explanatory variables ⫫u, which R² says nothing about, it only
relates to the t of the model

Interpretation of coe cients




ŷ ûŷ fi ŷ fi fi ffi

, Week 2
Multiple linear regression
De nitions
ᵢ=β̂₀+β̂₁xᵢ₁+β̂₂xᵢ₂
yᵢ= β̂₀+β̂₁xᵢ₁+β̂₂xᵢ₂ + ᵢ
• β^s measure the ceteris-paribus change in y given a one unit change in xᵢ
• This interpretation is only valid if MLR.4 holds

Gauss-Markov assumptions:
• MLR.1 Linear in parameters
• MLR.2 Random sample
• MLR.3 No perfect collinearity xⱼ≠x and there is no exact linear relationship among any xⱼ in the
population
• ie. none of the explanatory variables are constant, and there are no exact linear relationships
among ⫫ variables
• MLR.4 Mean independence, E[u|x₁, x₂..xk]=0
• ie. other factors a ecting y are not related on average to x₁ and x₂
• If this holds then explanatory variables are exogenous
• This implies E[u]=0 and E[xⱼu]=0
• MLR.5 Homescedasticity, the variance of u is constant and ⫫x, ie. E[u² |x₁, x₂..xk]= σ²

• MLR.6 Normality, the population error u is ⫫ of X and normally distributed u~N(0, σ²)
• This necessarily assumes MLR.4 and 5 so is a very strong assumption
• The argument of it is the CLT, however its key weakness is that it assumes that all
unobservable factors a ect y in a separate, additive way

Deriving OLS
Sum of squared residuals:
These are found by solving min. SSR=∑(yᵢ-β₀-β₁xᵢ-β₂x₂)²
This yields:




Partialling-out method:
1) Estimate an SLR of x₁ on x₂
xᵢ1= α0+α₁xᵢ2+ri1
And us this to compute the residual
ri1^=xᵢ1-α0^-α₁^xᵢ2
This partials out the variation of xᵢ1 explained by xᵢ2
Properties of ri1^:
• ∑ri1^=0
• ∑ ri1^xᵢ2=0
• ∑ ri1^xᵢ1=∑ri1^²

2) Regress yᵢ on ri1^ and a constant
yᵢ= θ+ β₁ri1^+vi
Giving β̂₁= ∑ri1^yᵢ/ ∑ri1^²






fi ff û ff
$69.82
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
zctpfru

Get to know the seller

Seller avatar
zctpfru University College London
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
43
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions