100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Test Bank For Introductory Econometrics: A Modern Approach, 7th Edition By Jeffrey M. Wooldridge | VERIFIED.

Rating
-
Sold
-
Pages
137
Grade
A+
Uploaded on
20-05-2024
Written in
2023/2024

Test Bank For Introductory Econometrics: A Modern Approach, 7th Edition By Jeffrey M. Wooldridge | VERIFIED. Nonexperimentalidataisicalled . a. cross-sectionalidata b. timeiseriesidata c. observationalidata d. panelidata Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iWhatis iEconometrics?BUSPROG: i Feedback: 3. Whichiofitheifollowingisitrueiofiexperimentalidata? a. Experimentalidataiareicollectedinilaboratoryienvironmentsinitheinaturalisciences. b. Experimentalidataicannotibeicollectediniaicontrolledienvironment. c. Experimentalidataisisometimesicallediobservationalidata. d. Experimentalidataisisometimesicallediretrospectiveidata. Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iWhatisiEconometrics? BUSPROG: Feedback: 4. Aniempiricalianalysisireliesion toitestiaitheory. a. commonisense b. ethicaliconsiderations c. data d. customsiandiconventions Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iAniempiricalianalysisireliesionidataitoitestiaitheory. 5. Theitermi‘u’iinianieconometricimodelisiusuallyireferreditoiasithe . a. erroriterm b. parameter c. hypothesis d. dependentivariable Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheitermiuiinianieconometricimodeliisicalleditheierroritermioridisturbanceiterm. 6. Theiparametersiofianieconometricimodel . a. includeialliunobservedifactorsiaffectingitheivariableibeingistudied b. describeitheistrengthiofitheirelationshipibetweenitheivariableiunderistudyianditheifactorsiaffectingiit c. referitoitheiexplanatoryivariablesincludedinitheimodel d. referitoitheipredictionsithaticanibeimadeiusingitheimodel Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheiparametersiofianieconometricimodelidescribeitheidirectioniandistrengthiof itherelationship i ibetweenitheivariableiunderistudyianditheifactorsiaffectingiit. 7. Whichiofitheifollowingiisitheifirstistepiiniempiricalieconomicianalysis? a. Collectioniofidata b. Statementiofihypotheses c. Specificationiofianieconometricimodel d. Testingiofihypotheses Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheifirstistepiiniempiricalieconomicianalysisisitheispecificationiofitheieconometricimodel. 8. Aidataisetithaticonsistsiofiaisampleiofiindividuals,ihouseholds,ifirms,icities,istates,icountries,ior iavariety i iofiotheriunits,itakeniatiaigivenipointiinitime,iisicalledia(n) . a. cross-sectionalidataiset b. longitudinalidataiset c. timeiseriesidataiset d. experimentalidataiset Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAidataisetithaticonsistsiofiaisampleiofindividuals,ihouseholds,ifirms,icities,istates,icountries,ori iaivarietyiofiotheriunits,itakeniatiaigivenipointiinitime,iisicallediaicross-sectionalidataiset. 9. Dataionitheiincomeiofilawigraduatesicollectediatidifferentitimesiduringitheisameiyearis . a. panelidata b. experimentalidata c. timeiseriesidata d. cross-sectionalidata Answer:id iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAidataisetithaticonsistsiofiaisampleiofindividuals,ihouseholds,ifirms,icities,istates,icountries,ori iaivarietyiofiotheriunits,itakeniatiaigivenipointiinitime,iisicallediaicross-sectionalidataiset. iTherefore,data i ionitheiincomeiofilawigraduatesioniaiparticulariyeariareiexamplesioficross-sectionalidata. 10. Aidataisetithaticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritimeiisicallediai i dataiset. a. binary b. cross-sectional c. timeiseries d. experimental Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitime-seriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritime. 11. Whichiofitheifollowingiisianiexampleiofitimeiseriesidata? a. Dataionitheiunemploymentiratesinidifferentipartsiofiaicountryiduringiaiyear. b. Dataionitheiconsumptioniofiwheatibyi200ihouseholdsiduringiaiyear. c. Dataionitheigrossidomesticiproductiofiaicountryioveriaiperiodiofi10iyears. d. Dataionitheinumberiofivacanciesinivariousidepartmentsiofianiorganizationioniaiparticularimonth. Answer:ic iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAitime-seriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesiover time.iTherefore,idataionitheigrossidomesticiproductiofiaicountryioveriaiperiodiofi10iyearsisianiexampleofi itimeiseriesidata. 12. Whichiofitheifollowingirefersitoipanelidata? a. Dataionitheiunemploymentirateiiniaicountryioveriai5-yeariperiod b. Dataionitheibirthirate,ideathirateiandipopulationigrowthirateinidevelopingicountriesioveriai10- yearperiod. i c. Dataionitheincomeiofi5imembersiofiaifamilyioniaiparticulariyear. d. Dataionitheipriceiofiaicompany’sishareiduringiaiyear. Answer:ib iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAipanelidataiseticonsistsiofiaitimeiseriesiforieachicross-sectionalimemberiinitheidataiset. iTherefore,idataionitheibirthirate,ideathirateiandinfantimortalityirateinidevelopingicountriesioveriai10-year i iperiodirefersitoipanelidata. 13. Whichiofitheifollowingiisiaidifferenceibetweenipaneliandipooledicross-sectionalidata? a. Aipanelidataiseticonsistsiofidataionidifferenticross-sectionaliunitsioveriaigiveniperiodiofitimeiwhile iapooled i idataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. b. Aipanelidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitimeiwhile iapooled i idataiseticonsistsiofidataionidifferenticross-sectionaliunitsioveriaigiveniperiodiofitime c. Aipanelidataiconsistsiofidataioniaisingleivariableimeasurediatiaigivenipointiinitimeiwhileiaipooled idataset i iconsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. d. Aipanelidataiseticonsistsiofidataioniaisingleivariableimeasurediatiaigivenipointiinitimeiwhileia ipooleddata i iseticonsistsiofidataionimoreithanioneivariableiatiaigivenipointiinitime. Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAipanelidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiof itimewhile i iaipooledidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. 14. i hasiaicausalieffection . a. Income;iunemployment b. Height;ihealth c. Income;iconsumption d. Age;iwage Answer:ic Difficulty: iModerateBloom’s: i iApplication A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i iAnalytic Feedback:iIncomeihasiaicausalieffectioniconsumptionibecauseianiincreaseiniincomeileadsitoianincrease i iiniconsumption. 15. Whichiofitheifollowingiisitrue? a. Aivariableihasiaicausalieffectionianotherivariableiifibothivariablesincreaseior idecreasesimultaneously. i b. Theinotioniofi‘ceterisiparibus’iplaysianimportantiroleinicausalianalysis. c. Difficulty ininferringicausalityidisappearsiwhenistudyingidataiatifairlyihighilevelsiofiaggregation. d. Theiproblemiofinferringicausalityiarisesifiexperimentalidataiisiusediforianalysis. Answer: i b iDifficulty:iModerate Bloom’s:iKnowledge A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i Feedback:iTheinotioniofi‘ceterisiparibus’iplaysianimportantiroleinicausalianalysis. 16. Experimentalidataiareisometimesicallediretrospectiveidata. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iWhatis iEconometrics?BUSPROG: i Feedback:iNonexperimentalidataiareisometimesicallediretrospectiveidata. 17. Anieconomicimodeliconsistsiofimathematicaliequationsithatidescribeivariousirelationships ibetweeneconomic i ivariables. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iAnieconomicimodeliconsistsiofimathematicaliequationsithatidescribeivarious irelationshipsbetween i ieconomicivariables. 18. Aicross-sectionalidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritime. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitimeiseriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesiovertime. i 19. Aitimeiseriesidataiisialsoicallediailongitudinalidataiset. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitimeiseriesidataiisialsoicallediailongitudinalidataiset. 20. Theinotionioficeterisiparibusimeansi“otherifactorsibeing iequal.”Answer: i iTrue Difficulty:iEasy iBloom’s:iKnowledge A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i Feedback:iTheinotionioficeterisiparibusimeansi“otherifactorsibeingiequal.” Chapteri2 1. Aidependentivariableiisialsoiknowniasia(n) . a. explanatoryivariable b. controlivariable c. predictorivariable d. responseivariable Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iAidependentivariableiisiknowniasiairesponseivariable. 2. Ifiaichangeiinivariableixicausesiaichangeiinivariableiy,ivariableixiisicalledithe . a. dependentivariable b. explainedivariable c. explanatoryivariable d. response ivariableAnswer: i ic Difficulty:iEasy Bloom’s:iComprehension A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iIfiaichangeiinivariableixicausesiaichangeinivariableiy,ivariableixiisicalleditheiindependentvariable i ioritheiexplanatoryivariable. 3. Initheiequationiyi= β0 + β1 i i i i ixi+iu, β0 isithe . a. dependentivariable b. independentivariable c. slopeiparameter d. interceptiparameter Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iInitheiequationiyi= β0 + β1 i i i i ixi+iu, β0 isitheinterceptiparameter. 4. Initheiequationiyi= β0 + β1 i i i i ixi+iu,iwhatiisitheiestimatedivalueiofi i i β0 i i i i ? a. ´y−β ^ 1 ix´ b. ´y+i βi 1 ix´ y iyi−i ´ ¿ ¿ ¿ c. (xi i−´x)¿i n ∑¿ i=1 ¿ n d. ∑xyi i=1 Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge 0 1 1 A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiestimatedivalueiof β0 is ´y−β ^ 1 ix´ . 5. Initheiequationici= β0 + β1 i i i i i ii+iu,icidenotesiconsumptioniandi idenotesiincome.iWhatiisithe residualiforithei5 th iobservationif c5 i i i i i=$500 iand a.i$975 b.i$300 c.i$25 d.i$50 c^5 i i i i i=$475? Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiformulaiforicalculatingitheiresidualiforithei th iobservationis u^i=yi i i−^yi i i i i i .iInithisicase, theiresidualiis u^5=c5 i−c^5 =$500i-$475=i$25. 6. Whatidoesitheiequation ^y=β ^ 0+i βi ^ 1 ix denoteiifitheiregressioniequationiisiyi=iβi i+iβ ixi i+iu? a. Theiexplainedisumiofisquares b. Theitotalisumiofisquares c. Theisampleiregressionifunction d. Theipopulationiregressionifunction Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiequation ^y=β ^ 0+i βi ^ 1 ix denotesitheisampleiregressionifunctioniofitheigiveniregression model. 7. Consideritheifollowingiregressionimodel:iyi=iβ0 i+iβ1x1 i+iu.iWhichiofitheifollowingiisiaiproperty iofOrdinary i iLeastiSquarei(OLS)iestimatesiofithisimodelianditheiriassociatedistatistics? a. Theisum,iandithereforeitheisampleiaverageiofitheiOLSiresiduals,iisipositive. i i i i b. TheisumiofitheiOLSiresidualsiisinegative. c. TheisampleicovarianceibetweenitheiregressorsianditheiOLSiresidualsisipositive. d. Theipointi(i i i i x´ , ´yi i i)ialwaysiliesionitheiOLSiregressioniline. Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiofiDataBUSPROG: i Feedback:iAniimportantipropertyiofitheiOLSiestimatesisithatitheipointi( , y´ )ialwaysiliesionithe OLSiregressioniline.iIniotheriwords,iif x=´xi i i ,itheipredictedivalueiof yisi i´yi i i . 8. Theiexplainedisumiofisquaresiforitheiregressionifunction, yi=β0 i+βi 1 i x1+ui 1 i i i i ,iisidefinedias . n ∑(yi i−´i y)i 2 i=1 n ∑(yi i−^y)i 2 i=1 n c. ∑ui^i i=1 n ∑(u i) 2 i=1 Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheiexplainedisumiofisquaresisidefinedias n ∑(yi i−^y)i 2 i=1 9. Ifitheitotalisumiofisquaresi(SST)iiniairegressioniequationiisi81,ianditheiresidualisumiofisquaresi(SSR) iis25, i iwhatiisitheiexplainedisumiofisquaresi(SSE)? a. 64 b. 56 a. b. d. Thank you, EMAIL ME @ For help with Assignments/Essay/Projects/Test Banks/practice Exams and any other classwork. c. 32 d. 18 Answer: i b iDifficulty:iModerate Bloom’s:iApplication A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i iAnalytic Feedback:iTotalisumiofisquaresi(SST)iisigivenibyitheisumiofiexplainedisumiofisquaresi(SSE)iandiresidualsumi iofisquaresi(SSR).iTherefore,iinithisicase,iSSE=81-25=56. 10. Ifitheiresidualisumiofisquaresi(SSR)iiniairegressionianalysisiisi66ianditheitotalisumiofisquaresi(SST) iisequal i itoi90,iwhatiisitheivalueiofitheicoefficientiofidetermination? a.i0.73 b.i0.55 c.i0.27 d.i1.2 Answer:ic Difficulty: iModerateBloom’s: i iApplication A-Head:iPropertiesiofiOLSioniAnyiSampleiofiDataBUSPROG: i iAnalytic Feedback:iTheiformulaiforicalculatingitheicoefficientiofideterminationis R 2=1−i 66i =0.27 90 R 2=1−i SSR SST .iInithisicase, 11. Whichiofitheifollowingiisiainonlineariregression imodel?a. i iyi=iβ0 i+iβ1x 1/2 i+iu yi=iβ0 i+iβ1logixi+u =i1i/i(β0 i+iβ1x)i+iu =iβ0 i+iβ1xi+iu Answer:ic Difficulty:iModerate iBloom’s:iComprehension A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iAiregressionimodeliisinonlineariifitheiequationiisinonlinearinitheiparameters.iInithisicase,y=1 i i/i(β0 i+iβ1x)i+iuiisinonlineariasiitiisinonlineariiniitsiparameters. 12. WhichiofitheifollowingiisiassumediforiestablishingitheiunbiasednessiofiOrdinaryiLeastiSquare i(OLS)estimates? i a. Theierroritermihasianiexpectedivalueiofi1igivenianyivalueiofitheiexplanatoryivariable. b. Theiregressioniequationiisilinearinitheiexplainediandiexplanatoryivariables. c. Theisampleioutcomesionitheiexplanatoryivariableiareiallitheisameivalue. d. Theierroritermihasitheisameivarianceigivenianyivalueiofitheiexplanatoryivariable. Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i Feedback:iTheierroriuihasitheisameivarianceigivenianyivalueiofitheiexplanatoryivariable. 13. Theierroritermiiniairegressioniequationiisisaiditoiexhibitihomoskedastictyif . a. itihasizeroiconditionalimean b. itihasitheisameivarianceiforiallivaluesiofitheiexplanatoryivariable. c. itihasitheisameivalueiforiallivaluesiofitheiexplanatoryivariable d. ifitheierroritermihasiaivalueiofioneigivenianyivalueiofitheiexplanatoryivariable. Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i Feedback:iTheierroriterminiairegressioniequationiisisaiditoiexhibitihomoskedastictyifiitihasithe isamevariance i iforiallivaluesiofitheiexplanatoryivariable. 14. Initheiregressioniofiyionix,itheierroritermiexhibitsiheteroskedasticityiif . a. itihasiaiconstantivariance b. Var(y|x)iisiaifunctioniofix c. xiisiaifunctioniofiy d. yiisiaifunctioniofix Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i i i i n Feedback:iHeteroskedasticityisipresentiwheneveriVar(y|x)isiaifunctioniofixibecauseiVar(u|x)i=iVar(y|x). 15. Whatiisitheiestimatedivalueiofitheislopeiparameteriwhenitheiregressioniequation,iyi=iβ0 i+iβ1x1 i+ iupasses i ithroughitheiorigin? n a. ∑yi i i=1 y ¿ ¿ b. ¿ ) ∑¿ i=1 n ∑xi i i iyi i=1 c. n ∑xi i 2 i=1 n ∑(yi i−´i y)i 2 i=1 Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iRegressionithroughitheiOriginiandiRegressionionia iConstantBUSPROG: i Feedback:iTheiestimatedivalueiofitheislopeiparameteriwhenitheiregressioniequationipassesithroughithe originiis n ∑xi i iyi i=1 in . ∑xi i 2 i=1 16. Ainaturalimeasureiofitheiassociationibetweenitwoirandomivariablesisitheicorrelationicoefficient. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i d. Feedback:iAinaturalimeasureiofitheiassociationibetweenitwoirandomivariablesisitheicorrelationcoefficient. i 17. TheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresiduals iisalways i ipositive. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresidualsisi izero. 18. R 2 isitheiratioiofitheiexplainedivariationicompareditoitheitotalivariation. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresidualsisi izero. 19. Thereiarein-1idegreesiofifreedominiOrdinaryiLeastiSquareiresiduals

Show more Read less
Institution
Introductory Econometrics
Course
Introductory Econometrics











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introductory Econometrics
Course
Introductory Econometrics

Document information

Uploaded on
May 20, 2024
Number of pages
137
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
SOLUTIONS2024 Chamberlain College Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
908
Member since
3 year
Number of followers
696
Documents
5458
Last sold
1 week ago
ALPHA STUDY CENTRE.

Alpha Academy is a dedicated study centre where you will find QUALITY & RELIABLE study resources that will help you prepare, revise and pass your examinations for all majors and modules in real TIME.. Good Luck from ALPHA ACADEMY.

3.7

180 reviews

5
91
4
26
3
19
2
7
1
37

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions