100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Lineaire Algebra - Hfst 8 Eigenwaarden en eigenvectoren

Rating
-
Sold
-
Pages
2
Uploaded on
17-05-2024
Written in
2023/2024

Hfst 8: Eigenwaarden en eigenvectoren gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 17, 2024
File latest updated on
July 10, 2024
Number of pages
2
Written in
2023/2024
Type
Summary

Subjects

Content preview

Hoofdstuk 8
Eigenwaarden en eigenvectoren


Eigenwaarden en eigenvectoren
⃗ = 𝝀𝒙
𝑨𝒙 ⃗

▪ 𝐴𝑥 = lineaire transformatie met A de tranformatiematrix
▪ 𝑥 = eigenvector = intuïtief een vector die niet veranderd
▪ λ = eigenwaarde

Ga na of volgende vectoren eigenvectoren zijn van de matrix A

▪ Bereken 𝐴𝑥 en kijk of je het kan herschrijven als een scalair maal 𝑥 => 𝜆𝑥
▪ Meetkundige interpretatie:
o Beschouw de vector die je moet onderzoeken in het assenstelsel, als de nieuwe vector
gevormd door 𝐴𝑥 op de rechte ligt dat de oorsprong en de vector vormen, is het een veelvoud
en dus een eigenvector van A


Bepaal de eigenwaarden en eigenvectoren voor een gegeven A !!!goed beheersen

▪ 𝑨𝒙⃗ = 𝝀𝒙
⃗ met 𝒙
⃗ ≠ 0 dus de nuloplossing kan al niet
▪ 𝐴𝑥 – 𝜆𝑥 = ⃗0
▪ (𝐴 – 𝜆𝐼)𝑥 = ⃗0
▪ Dan de 𝑥 ’en zoeken zodat dit stelsel meer dan 1 oplossing heeft
Dus deze matrix mag NIET inverteerbaar zijn (anders heb je een unieke oplossing) → det = 0
▪ det(𝐴 – 𝜆𝐼) = 0 (op de hoofdiagonaal van A telkens – λ doen)
▪ Dit oplossen en zo bekom je uitdrukkingen voor 𝜆 = …. = de eigenwaarden
o Bij matrices groter dan 2x2 zal je moeten proberen rij/kolom ontwikkelen
o Probeer 0’en te creëren
▪ Nu alle eigenwaarden als gevallen beschouwen om de bijhorende eigenruimte met eigenvectoren
te bepalen
▪ ⃗ ] en rij herleidt deze matrix
Vul λ in, in de uitgebreide matrix [(𝐴 – 𝜆𝐼) 0
▪ 𝑥 = [oplossing] → parameterisatie en zo bekom je de eigenruimte = al de eigenvectoren voor die λ
= eigenruimte εA(λ) van die eigenwaarde λ
meetkundig kan je de eigenruimte als een lijn (1 vector) of als vlak (2 vectoren), …. Voorstellen
= alle eigenvectoren die in die ruimte zitten behorend tot die specifieke eigenwaarde, van A


De karakteristieke vergelijking pA(𝝀)

→ bevat de eigenwaarden van 𝑨 – 𝝀𝑰

Kan ontbonden worden in factoren van de eerste graad = de eigenwaarden, kan met multipliciteit 2 of meer


De eigenruimte εA(λ) van een eigenwaarde λ

= de verzameling van alle eigenvectoren bij λ

▪ De eigenruimte εA(λ) = N(𝑨 – 𝝀𝑰), de nulruimte van (𝑨 – 𝝀𝑰) met 𝝀 ingevuld


Algebraïsche multipliciteit αA(λ) = aantal keer dat λ als wortel in pA(λ) voorkomt

Meetkundige multipliciteit γA(λ) = de dimensie van εA(λ) = aantal vectoren die het opspant (na parameter)

▪ Als αA(λ) = γA(λ) VA L, dan is A diagonaliseerbaar met A = PDP-1 zie hfst 9
$3.61
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
BioEngineer Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
75
Member since
2 year
Number of followers
7
Documents
76
Last sold
1 week ago
Bio Engineer Stach

Uitgebreide samenvattingen die telkens alles vanuit de powerpoint + extra in de les gezegd, bevatten. Daarbij probeer ik dit altijd op een overzichtelijke en mooie manier voor te stellen, want niemand heeft gezegd dat studeren saai moet zijn. Indien vragen, stuur gerust een bericht. Ik doe zelf ook nog bio-ingenieur en heb met deze samenvattingen altijd moeiteloos kunnen slagen.

4.0

3 reviews

5
1
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions