Orthogonaliteit
Het scalair product
⃗ = 𝒖
⃗ ∙ 𝒗
𝒖 ⃗ 1+…+𝒖
⃗ 1𝒗 ⃗ n = scalair
⃗ n𝒗
Eigenschappen:
⃗ ∙ 𝑣=𝑣 ∙ 𝑢
𝑢 ⃗
(𝑢
⃗ + 𝑣) ∙ 𝑤 ⃗⃗ = 𝑢 ⃗ ∙ 𝑤
⃗⃗ + 𝑣 ∙ 𝑤
⃗⃗ )
⃗ ) ∙ 𝑣 = 𝑐(𝑢
(𝑐𝑢 ⃗ ∙ 𝑣)
𝑢
⃗ ∙ 𝑢⃗ ≥ 0 en 𝑢 ⃗ ∙ 𝑢⃗ =0𝑢 ⃗ = 0 ⃗
2
De norm of lengte van 𝒗
⃗ → ||𝒗
⃗ || = √𝒗 ⃗ = √𝑣
⃗ ∙ 𝒗 ⃗⃗⃗⃗1 + ⋯ + ⃗⃗⃗⃗⃗
𝑣𝑚 ² en ||𝒗
⃗ ||² = 𝒗
⃗ ∙ 𝒗
⃗
Eenheidsvector van 𝒗 ̂ = 𝒗⃗ → de norm van deze vector = 1, ligt in dezelfde richting als 𝒗
⃗ → ⃗𝒗 ⃗
⃗ ||
||𝒗
Afstand tussen twee vectoren → d(𝒖 ⃗ ) = ||𝒖
⃗ ,𝒗 ⃗ || = euclidische afstand
⃗ −𝒗
⃗ = ||𝒖
⃗ ∙ 𝒗
𝒖 ⃗ || ∙ ||𝒗
⃗ || cos(θ) = 𝒖
⃗ 𝑻𝒗
⃗ (zodat u een 1xn matrix wordt, v een nx1)
⃗ ∙𝒗
𝒖 ⃗
cos(θ) = ⃗ || ∙ ||𝒗
⃗ ||
= de cosinus-similariteit (similariteit tussen twee vectoren)
||𝒖
Welke vectoren hebben de grootste cosinus-similariteit?
Bereken de norm van alle vectoren
Vul ze in bovenstaande formule in
Hoogste getal heeft het meest gemeenschappelijk
1 = alles gemeenschappelijk (getal van 0 – 1)
Orthogonaliteit:
2 vectoren 𝒖 ⃗ zijn orthogonaal (loodrecht) als 𝒖
⃗ 𝐞𝐧 𝒗 ⃗ =0
⃗ ∙ 𝒗
Orthogonale = lineair onafhankelijke verzameling
Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthogonaal als elk paar van vectoren uit de verzameling orthogonaal is
Indien S een orthogonale verzameling is, is S lineair onafhankelijk
Voor alle 𝑣 i en 𝑣 j in S testen of ze orthogonaal zijn 𝑣 ⃗⃗⃗ j = ⃗0 voor i ≠ j
⃗⃗⃗ i . 𝑣
Orthonormaal = ortogonale lineair onafhankelijke verzameling met eenheidsvectoren
Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthonormaal, als ze orthogonaal is en de vectoren eenheidsvectoren
zijn (norm 1 hebben), dus de vectoren zijn orthogonaal en genormeerd = orthonormaal