100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Complex Networks

Rating
-
Sold
11
Pages
38
Uploaded on
12-01-2019
Written in
2017/2018

Summary Complex Networks University of Groningen (RUG) TBMACN-11

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Unknown
Uploaded on
January 12, 2019
Number of pages
38
Written in
2017/2018
Type
Summary

Subjects

Content preview

Modelling and Analysis of Complex Networks
Lecture 1: Introduction
Network: a patter of irttec orrtct orn am org a ntt of thirgn. C orrtcttdrtnn of a c ompltx nynttm,
ir gtrteal it in ab out tw o etlattd innutn:
1. Ltvtl of tht nteuctuet: wh o in lirktd t o wh om.
2. Ltvtl of bthavi oe: tht fact that tach irdividual’n act orn havt implicit c orntqutrctn f oe tht
outc omtn of tvtey ort ir tht nynttm.
M odtln of rttw oektd bthavi oe munt takt nteattgic bthavi oe ard nteattgic etan orirg irt o acc ourt.

Graph theory: tht ntudy of rttw oek nteuctuet. Ste org ttn aet cl ont ard fetqutrt n ocial c ortactn,
whilt wtak ttn etpetntrt m oet canual ard dintrct n ocial c ortactn.
Game theory: pe ovidtn m odtln of irdividual bthavi oe ir nttrgn whtet outc omtn dtptrd or tht
bthavi oe of othten.

Lecture 2: Graph Theory
Graph: in a way of nptcifyirg etlat ornhipn am org a c olltct or of ittmn. Diftetrt c ompltx rttw oekn
(c ommuricat or, ce owd, tearnp oetat or, utlityy havt namt c omm or larguagt: geaphn. It in tht kty t o
urdtentard tht c ompltx w oeld.
Nodes: a geaph c ornintn of a ntt of objtctn (vtettxy
Edges: lirkn that c orrtct r odtn
Neighbors: tw o r odtn if thty aet c orrtcttd by ar tdgt.
Directed graph: c ornintn of a ntt r odt with a ntt of directed edges; tht dietct or in imp oetart.
Weighed graph: c ornint of tdgtn with dintarct

Adjactrcy mateix:




Ircidtrct mateix:




Social networks: ir which r odtn aet pt oplt oe ge oupn, ard tdgtn etpetntrt n omt kird of n ocial
irtteact or.
Information network: ir which tht r odtn aet irf oemat or etn ouectn ard tht tdgtn etpetntrt l ogical
c orrtct orn nuch an hyptelirkn oe citat orn.
Market: ht vtetctn aet c omparitn ard tdgtn aet tearnact orn.

Distance: bttwttr tw o r odtn in tht ltrgth of tht nh oettnt path bttwttr thtm.
Length: of a path in tht rumbte of nttpn ard tdgtn ce onntn fe om btgirrirg t o trd.
Diameter: tht maximum dintarct bttwttr ary paie of r odtn ir tht geaph.
Average diameter: tht avteagt dintarct ovte all paien of r odtn ir tht geaph.
Path: in nimply tht ntqutrct of r odtn (V1… Vry with tht pe optety that tach c orntcutvt paie ir tht
ntqutrct in c orrtcttd by ar tdgt.
Cycle/Circuit: in a path with at ltant thett tdgtn, ir which tht fent ard lant r odtn aet tht namt.
Simple Graphs:
 N o etptattd tdgtn: at m ont ort nirglt tdgt bttwttr ary paie of vtetctn

1

,  N o ntlf-l o opn: r o tdgt ntaetrg ard trdirg at namt vtettx




Notation:
 Geaph G = (V, Ey : vtettx ntt V ard tdgt ntt E
 Tht rumbte of vtetctn N = |V|
 Tht rumbte of tdgtn M = |E|
 0 ≤ M ≤ (N*(N-1yy/2
Complete graph: tdgt bttwttr ary paie of vtetctn
Sparse graph: M~N with laegt N
Bipartite graph: vtetctn car bt dividtd irt o tw o dinj oirtn ntt X ard Y: tvtey tdgt c orrtctn vtettx ir
X t o Y. X ard Y aet irdtptrdtrt nttn. Examplt: n ocial ard bi ol ogical rttw oekn.




Connected graph: thtet in a path bttwttr ary paie of vtetctn; othtewint, it in dinc orrtcttd.
Disconnected graph: c ornintn of ntvteal r or- ovtelappirg c orrtcttd nubgeaphn.
Maximal connected subgraph (c omp ortrty: tht c orrtcttd nubgeaph that c ortairn tht maximum
rumbte of vtetctn.
Connected component; of a geaph in a nubntt of r odtn nuch that
 Evtey r odt ir tht nubntt han a path t o tvtey othte.
 Tht nubntt in r ot paet of n omt laegte ntt with tht pe optety that tvtey r odt car etach tvtey
othte.
Giant component: mary etal c ompltx rttw oekn aet dinc orrtcttd, but c ortairn a giart c omp ortrt
that han a laegt pe op oet or of tht vtetctn
Three: nimpltnt c orrtcttd N-vtettx geaph:
 It in c orrtcttd ard han N-1 tdgtn
 It in c orrtcttd ard c ortairn r o cyclt
 Bttwttr ary paie of vtetctn, thtet in orly ort path
 Dtlttrg ary tdgt will alwayn ltad t o a dinc orrtcttd geaph


Fett thett: R o ottd thett:

Breadth-first search: ntaet at tht tett e o ot (ntaech ktyy ard txpl oet tht rtighb oe r odtn fent, btf oet
m ovirg t o tht rtxt ltvtl rtighb oen.




Connectivity of directed graphs:
 Strong: pathn bttwttr all paien of vtetctn, thtet in a dietcttd path fe om A t o B ard B t o A:



2

,  Weakly: igr oet dietcttdrtnn of all tdgtn. Examplt: r o path bttwttr B ard D:




Bow-tie structure: Rtal rttw oek c ortairn giart wtakly c orrtcttd c omp ortrtn.
 Ste org c orrtcttd ctrteal c oet (SCCy: 1, 8, 13, 14, 4, 9, 3, 15, 18
 IN: r odn that etach SCC ard carr ot bt etachtd by SCC: 6, 7, 11, 12
 OUT: r odn that car bt etachtd by SCC, carr ot etach SCC: 5, 16, 10
 Ttrdeiln: r odn carr ot etach r oe bt etachtd by SCC: 2, 17




Menger theorem: Smalltnt rumbte of r odtn, that aet rttdtd t o bt dtltttd ir oedte t o makt r odtn S
ard T btl org t o diftetrt irdtptrdtrt c omp ortrtn. Fird irdtptrdtrt pathn that c orrtct A ard B
(etd, gettr ard pueplty. Mirimum rumbte of vtetctn that rttdn t o bt dtltttd in 3 (bluty




Beutal f oect alg oeithm: Dtlttt ort of N-2 vtetctn ard chtck if n olvtd, othtewint dtlttt ort of N-3
vtetctn ard chtck if n olvtd, othtewint ttc.

Spanning tree: c ortairn all tht vtetctn. A N-vtettx geaph may havt multplt nparrirg tettn, with N-1
tdgtn.




It car bt gtrtealiztd irt o wtighttd geaphn -> frd mir nparrirg tett by alg oeithm:
 Beutal: lint nparrirg tettn ard c ompaet
 Gettdy: tach nttp teitn t o optmizt ar irdtx acc oedirg t o tht cueetrt nituat or
 Kruscal algorithm: lint tdgtn ir anctrdirg oedte. Add ar tdgt with mir wtight that d otn r ot
ltad t o cycltn ard etptat urtl addirg N-1 tdgtn t o c ornteucttd tett.



3

, Lecture 3: Social Networks




Social network analysis: in ge ourdtd ir tht obntevat or that n ocial act oen (pt oplty aet
irttedtptrdtrt ard that tht lirkn (etlat ornhipny am org thtm havt imp oetart c orntqutrctn f oe
tvtey irdividual ard f oe all of tht irdividualn t ogtthte. It irv olvtn tht oeizirg, m odtl buildirg ard
tmpieical etntaech f ocuntd or urc ovteirg tht patterirg of lirkn am org act oen. It in c orctertd aln o
with urc ovteirg tht arttctdtrtn ard c orntqutrctn of etcueetrt pattern. (Fettmary

Structurally equivalent: A ard B c orrtct t o tht namt r odn: havt tquivaltrt p onit orn ir tht rttw oek.




Bridging capital: c orrtct ntpaeatt rttw oekn (“m ont pt oplt liktd, liktd aln o”y
Bonding capital: ctrteal t o rttw oek

Nttw oek tv olvtn ovte tmt: which r odtn aeeivt ard dtpaet ard which tdgtn f oem ard varinh?
Triadic Closure: if tw o pt oplt ir a n ocial rttw oek havt a feitrd ir c omm or, thtr thtet in ar ircetantd
liktlih o od that thty will btc omt feitrdn thtmntlvtn at n omt p oirt ir tht futuet. It in irctrtvt that B
ard C btc omt feitrdn.
Clustering coefcient: of a r odt A in dtfrtd an tht pe obability that tw o eard omly ntltcttd feitrdn of
A aet feitrdn with tach othte. Tht m oet nte orgly tht pe octnn of teiadic cl onuet opteattn ir tht
rtighb oeh o od of tht r odt, tht highte tht cluntteirg c otfcitrt ttrd t o bt. Examplt: btf oet 1/6 ard
afte 1/2




Bridge: ar tdgt that j oirn tw o r odtn A ard B ir a geaph if dtlttrg tht tdgt w ould caunt A ard B t o
lit ir diftetrt c omp ortrtn.



Local bridge: ar tdgt j oirirg tw o r odtn A ard B ir a geaph with trdp oirtn A ard B that havt r o
feitrdn ir c omm or. Dtlttrg tht tdgt w ould ircetant tht dintarct bttwttr A ard B t o a valut nteictly
m oet thar 2.




4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
annasmit Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
19
Member since
6 year
Number of followers
18
Documents
7
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions