100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Beschrijvende & Inferentiële Statistiek

Rating
-
Sold
-
Pages
21
Uploaded on
08-04-2024
Written in
2023/2024

Samenvatting vak Beschrijvende & Inferentiële Statistiek, dat wordt gegeven het eerste studiejaar als onderdeel van vrijwel elke opleiding verbonden aan de FSW. Bevat: formules, begrippen, toelichting en uitleg.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
April 8, 2024
Number of pages
21
Written in
2023/2024
Type
Summary

Subjects

Content preview

Samenvatting Statistiek



Normaalverdeling


Variantie van een serie waarnemingsgetallensteekproef Waarin:

∑𝑛𝑖=1(𝑥𝑖 − 𝑥̅ )2 xi = i-de getal in de getallenreeks x
𝑆 2 / 𝑉𝑎𝑟(𝑋̅) =
𝑛−1 x =̅ het steekproefgemiddelde

Variantie van een serie waarnemingsgetallenpopulatie n = het aantal observaties in de getallenreeks x

μ = het populatiegemiddelde
∑𝑛
𝑖=1(𝑥𝑖 −𝜇)
2
𝑆 2 / 𝑉𝑎𝑟(𝑋) = 𝑛 σ = de standaarddeviatie




Standaarddeviatie van een serie waarnemingsgetallensteekproef
𝑛
∑ (𝑥𝑖 −𝑥̅ ) 2
𝑆/𝜎(𝑋̅) = √ 𝑖=1𝑛−1 Waarin:

Zxi = de z-score van het i-de geobserveerde punt in de reeks x

Zyi = de z-score van het i-de geobserveerde punt in de reeks y
Standaarddeviatie van een serie waarnemingsgetallenpopulatie
n = het aantal observaties in de dataset
∑𝑛
𝑖=1(𝑥𝑖 −𝜇)
2
𝑆/𝜎(𝑋) = √ 𝑛




De waarschijnlijkheid van een bepaalde Z-score voor een waarde
𝑋−𝜇 ó𝑓 𝑥̅
Z-score 𝑍 = 𝜎
binnen een normaalverdeling volgt uit de volgende kenmerken
van een normaalverdeling:

𝑃(𝜇 − 𝜎 ≤ 𝑋 ≤ 𝜇 + 𝜎) ≈ 0,68

𝑃(𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎) ≈ 0,95

𝑃(𝜇 − 3𝜎 ≤ 𝑋 ≤ 𝜇 + 3𝜎) ≈ 0,997

Oftewel, de kans op een Z-score van groter dan 3 of kleiner dan -3
Regressie-analyse is (tezamen) gelijk aan 1-0,997 = 0,003.




r = 1: er is een perfecte positieve lineaire relatie tussen de twee
variabelen.
Pearson’s ruitgedrukt in termen van Z-scores
r = −1: er is een perfecte negatieve lineaire relatie tussen de twee
∑𝑛
𝑖=1(𝑍𝑥𝑖 ×𝑍𝑦𝑖 )
variabelen. Alle punten liggen precies op een rechte lijn met een
𝑟= 𝑛−1 negatieve helling.

r = 0: er is geen lineaire relatie tussen de twee variabelen. Er is geen
verband tussen de variabelen.




1

, Determinatie-coëfficiënt Waarin:

∑𝑛 (𝑌 −𝑌
̂ )2 𝑌𝑖 = de geobserveerde waarden i zijn van de
𝑟 2 / 𝑅 2 = ( ∑𝑖=1
𝑛 (𝑌
𝑖 𝑖
−𝑌̅)2
) of afhankelijke variabele
𝑖=1 𝑖
̂𝑖 = de voorspelde waarden i van het
𝑌
regressiemodel

som van gekwadrateerde afwijkingen in de voorspelde waarden 𝑌̅ = de gemiddelde waarde van de geobserveerde
𝑟 2 /𝑅 2 = ( som van gekwadrateerde afwijkingen in de werkelijke waarden ) waarden

n = het aantal observaties in de dataset


of
𝑆𝑆tot − 𝑆𝑆res Waarin:
𝑟2/ 𝑅2 =
𝑆𝑆tot
𝑆𝑆tot = de totale som van kwadraten
of 𝑆𝑆res = de residuale som van kwadraten

𝑆𝑆𝑟𝑒𝑔 𝑆𝑆𝑟𝑒𝑔 = de regressiesom van kwadraten
𝑟 2 /𝑅2 =
𝑆𝑆tot


volgend uit

Waarin:

𝑦𝑖 = de waarden van de afhankelijke variabele
Totale som van kwadraten (𝑆𝑆tot ): voor observatie 𝑖
𝑛 𝑦̅ = het gemiddelde van de afhankelijke variabele
∑(𝑦𝑖 − 𝑦̅)2 𝑛 = het aantal observaties in de dataset
𝑖=1




Residuale som van kwadraten (𝑆𝑆res ):
𝑛
2
∑(𝑦𝑖 − 𝑦̂)
𝑖
Waarin:

𝑖=1 𝑦̂𝑖 = de voorspelde waarden van de afhankelijke
variabele voor observatie 𝑖



Regressie som van kwadraten (𝑆𝑆reg ):

∑𝑛𝑖=1(𝑦̂𝑖 − 𝑦̅)2



of

Voor berekenen regressielijn, zie ‘methodiek’.

𝑆𝑆𝑟𝑒𝑔 = 𝑆𝑆tot − 𝑆𝑆res




2

, Kritieke T-waardelineaire regressiecoëfficiënt
𝑏
𝑇 =
𝑠𝑒𝑏

Waarin:

b = de lineaire regressiecoëfficiënt
De berekening van de standaardfout in deze
𝑠𝑒𝑏 = de standaardfout van b
context is ingewikkeld en wordt in de
kennisclips en in de voorgeschreven literatuur
niet genoemd. Tijdens een tentamen zal deze
altijd gewoon worden gegeven.


Waarin:

b = de lineaire regressiecoëfficiënt
Betrouwbaarheidsinterval slope
𝑠𝑒𝑏 = de standaardfout van b
𝑏 ± 𝑇95%(𝑠𝑒𝑏 )
𝑇95% = de kritieke T-waarde bij df



Vrijheidsgradenlineaire regressiecoëfficiënt Waarin:

𝑑𝑓 = 𝑛 − 1 − 𝑘 n = het aantal observaties

k = het aantal regressoren/onafhankelijke
variabelen

Kritieke F-waarde
𝑑𝑓2 𝑆𝑆reg = de regressiesom van kwadraten
𝑆𝑆reg ×
𝑑𝑓1
𝐹= 𝑆𝑆res = de residuale som van kwadraten
𝑆𝑆res
𝑑𝑓1 = het aantal vrijheidsgraden voor de
regressie, gelijk aan het aantal regressoren
(onafhankelijke variabelen) in het model (=k).

𝑑𝑓2= het aantal vrijheidsgraden voor de residuen,
gelijk aan het aantal observaties minus het aantal
regressoren minus 1.



Betrouwbaarheidsanalyse

Waarin:
Covariantie tussen twee variabelen
X & Y = de twee variabelen waarvan je de
∑𝑛𝑖=1(𝑥𝑖 − 𝑥̅ )(𝑦𝑖 − 𝑦̅) covariantie wilt berekenen
𝐶𝑜𝑣(𝑋, 𝑌) =
𝑛−1 xi & yi = de individuele waarden van deze
variabelen

x̅ & y̅ = de gemiddelden van X en Y

n = het aantal waarnemingen




3
$12.80
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Boekverslagenfanaticus

Get to know the seller

Seller avatar
Boekverslagenfanaticus Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
2 year
Number of followers
3
Documents
4
Last sold
10 months ago
Boekverslagenfanaticus

Schreef veel te uitgebreide boekverslagen....

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions