100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Beschrijvende statistiek

Rating
-
Sold
-
Pages
5
Uploaded on
29-12-2018
Written in
2018/2019

Beschrijvende statistiek geeft weer welke grafieken en variabelen je wanneer gebruikt, enkel om te beschrijven. Hier worden er nog geen verbanden of verschillen bekeken.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 29, 2018
Number of pages
5
Written in
2018/2019
Type
Summary

Subjects

Content preview

Hoofdstuk 1: Beschrijvende
statistiek
Beschrijvende statstei is het beschrijven van de gegevensverzameling vanuit de steekproef. Het
wordt gebruiit bij exploratieve data-anaalsse waarbij elie variabele individueel verient wordt. Je
werit eerst GRAFISCH (visueel), dana NUMERIEK (data-reducte).

Weergeven van verdelingen met GRAFIEKEN
Grafieken voor kaalitatieve variaeelen
Kwalitateve variabelen zijn categorische variabelen. Je iunt niets doen met woorden, daarom
worden ze in aantallen weergegeven (liefst in % (duidelijier)) . Ze iunnen worden weergegeven in
een staafdiagram of taartdiagram .

Grafieken voor kaantitatieve variaeelen
Geef de variate binnen verzameling van getallen weer. Een variatiepatroon van iwanttateve
variabelen is een verdelinag van de variabelen. Hierbij wordt er gebruiigemaait van
- Frequentetabel
- Grafische voorstelling
 Stamdiagram: geef de vorm van de verdeling weer
Voorbeeld: Aantal doelpunten per seizoen van 10 ploegen
In de STAM iolom worden alle 1e getallen
weergegeven. In de BLAD iolom worden eniel
de laatste getallen weergegeven van ilein naar
groot.

Je ian ooi een rug-aan-rug stamdiagram maien waarbij 2 verdelingen met eliaar
worden vergeleien.
Eigenschappen:
 Niet geschiit voor grote groepen of veel observates.
 Histogrammena: Aantal (frequente) of % waarnemingen in eli interval.
De data wordt hierbij eerst verdeeld in ilassen van gelijke breedte. De ieuze van het
aantal ilassen is belangriji: Te weinig zorgt voor allemaal hoge bloiien in je histogram,
te veel zorgt voor het omgeieerde. In tegenstelling tot de staafdiagram worden er hier
geena ruimtes gelaten tussen de verschillende staafes.
Onderzoeien van verdelingen
Een iiji in de grafische voorstellingen zorgt voor een zicht op het globale patroon en
opvallende afwijiingen.
Eigenschappen verdelingen
 De cenatrum van de verdeling wordt door de MEDIAAN (M) of het GEMIDDELDE ( x́ )
aangeduid.
 De spreidinag is de RANGE tussen het minimum en maximum. Het is de spreiding
t.o.v. de centrummaat. Het geef aan in welie mate de data verspreid is van het
gemiddelde/mediaan. De modus is de score die het meest frequent vooriomt en
dus ooi de top van de grafiei is. (een top of verschillende is uni- of multmodaal)
 De vorm van de verdeling ian scheef of symmetrisch zijn.


1

,  De uitbijters zijn afwijiingen van de algemene vorm. Deze ian langs de minimum of
maximum iant vooriomen. Soms hebben ze een beteienis en mogen ze dan NIET
weggelaten worden (M gebruiken), indien ze een fout voorstellen en dus geen
beteienis hebben mogen ze WEL weggelaten worden ( x́ gebruiken). De uitbijters
hebben een invloed op het gemiddelde!
 Tijdreeksgrafiekena: lijndiagrammen
Hierbij worden gegevens uitgezet tegen tjd of volgorde, waarbij de tijd altjd op de
horizonatale as wordt voorgesteld:




Verdelingen numeriek eeschrijven
Herhaling: Eerst iijien we naar de vorm van de verdeling op een GRAFISCHE manier. Deze geef ons
eniel een idee “OP HET ZICHT” en dus geen exacte gegevens. Vervolgens is er de NUMERIEK
beschrijving, met de cenatrum en spreidinag die wordt bereiend voor geliji welie iwanttateve
variabele.
Meten van het centrum: Gemiddelde en Mediaan
Rekenkundig gemiddelde of gemiddelde
Het gemiddelde bereienen doen we door alle waarnemingen op te tellen en deze te delen door het
1
n ∑ 1
aantal waarnemingen: x́ = . x . Het gemiddelde is GEEN resistente maat!


Mediaan
De mediaan is de middelste waarneming in geordende lijst. Bij een oneven lijst neem je het
middelste, bij een even lijst neem je het gemiddelde van de twee middelste. Om de posite van M te
(n+1)
vinden: . De mediaan is gemaiieliji af te lezen uit een STAMdiagram en is WEL een resistente
2
centrummaat.

Gemiddelde vs. Mediaan
Bij een ssmmetrische verdeling is het gemiddelde geliji aan de mediaan. Naarmate de verdelingen
schever worden, gaan de gemiddelde en mediaan verder uit eliaar liggen.
- Uitbijters corrigeren of weglaten  x́
- Uitbijters erin laten  M
Meten van spreiding: Kaartielen (M)
Kaartielen
Kwartelen worden gebruiit bij het beschrijven een verdeling: Centrummaat en spreidingsmaat. Een
spreidinagsmaat gaat de variabiliteit1 van een verdeling uitdruiien. De spreidinag is het verschil tussen
het maximum en het minimum. Resultaten iunnen een gelijie M en x́ hebben, maar een
verschillende spreiding.


1
Variabiliteit = spreiding

2
$4.83
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
emiliea Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
63
Member since
6 year
Number of followers
33
Documents
77
Last sold
2 year ago

3.0

7 reviews

5
0
4
1
3
5
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions