100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Asset Liability Management Part I EOR

Rating
-
Sold
3
Pages
32
Uploaded on
02-04-2024
Written in
2023/2024

Summary of the first part given at Tilburg University.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 2, 2024
Number of pages
32
Written in
2023/2024
Type
Summary

Subjects

Content preview

Tilburg University

QFAS


Summary ALM

Author: Supervisor:
Rick Smeets Schweizer, N

April 2, 2024

,Table of Contents
1 Introduction to Dynamic Asset Allocation 3

2 Theory Warm-up: The discrete time case 3
2.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The Optimization Problem . . . . . . . . . . . . . . . . . . . . 6
2.4 The Dynamic Programming Principle . . . . . . . . . . . . . . 6
2.5 Markovian Framework . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Backward solution approach . . . . . . . . . . . . . . . . . . . 7

3 Cont. Time Portfolio Choice: the HJB approach 8
3.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Price and Wealth Dynamics . . . . . . . . . . . . . . . . . . . 9
3.4 Towards the HJB . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Cont. Time Portfolio Choice: the HJB approach with con-
stant investment opportunities 13
4.1 The Simplified Problem . . . . . . . . . . . . . . . . . . . . . 14
4.2 Consumption and Portfolio Choice . . . . . . . . . . . . . . . 14
4.3 Two Fund Separation . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 CRRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Conjecture and final solution . . . . . . . . . . . . . . . . . . . 17

5 Cont. Time Portfolio Choice: a second look outside the
Black-Scholes world 19
5.1 Recalculating the HJB . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Portfolio Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Three Fund Separation . . . . . . . . . . . . . . . . . . . . . . 20

6 Cont. Time Portfolio Choice: the Martingale Method 21
6.1 The Martingale Method in a Nutshell . . . . . . . . . . . . . . 22
6.2 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Option Pricing Theory - a Reminder . . . . . . . . . . . . . . 23
6.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 24
6.5 A Candidate Solution . . . . . . . . . . . . . . . . . . . . . . . 25

1

,6.6 Investment Strategies . . . . . . . . . . . . . . . . . . . . . . . 26
6.7 The CRRA Case . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.8 The Black-Scholes Setting . . . . . . . . . . . . . . . . . . . . 29
6.9 Beyond Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . 30
6.10 Logarithmic Utility . . . . . . . . . . . . . . . . . . . . . . . . 31




2

, 1 Introduction to Dynamic Asset Allocation
Definition 1.1. An incomplete market is a market where not all risks
can be hedged, i.e., a market where we cannot let risk disappear by holding
a well-chosen portfolio of liquidity traded assets.


2 Theory Warm-up: The discrete time case
Dynamic Asset Allocation can be referred to as optimal portfolio choice
as well as optimal investment. The problem is to find a long-term consump-
tion and investment strategy that maximizes expected utility, where we have
to take several trade-offs into consideration such as risk versus return, or
consuming now or later.

2.1 The Setting
We consider the following statements with respect to the discrete setting in
Dynamic Asset Allocation:

1. We have a time horizon [0, T ] partitioned into N time intervals [tn , tn+1 ]
of length ∆t, that means tn = n∆t and tN = N ∆t = T .

2. An agent can invest at each time point t ∈ T = {t0 , ..., tN −1 } into d + 1
assets with price processes Pti , i = 0, ..., d.

3. Asset 0 is locally risk-free, that means that at time t it is known that
0
Pt+∆t = (1 + rt ∆t)Pt0 . ’Locally’ means that the risk free interest rate
is only known for the upcoming period.

4. The remaining assets i > 0 are risky and their returns are denoted by
 i
Pt+∆t − Pti

i
Rt+∆t = ,
Pti

moreover the column vector of the returns of the risky assets equals
1 d
′
Rt+∆t = Rt+∆t , . . . , Rt+∆t




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
rickprive611 Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
45
Member since
7 year
Number of followers
2
Documents
9
Last sold
1 week ago
Tilburg University - EOR - Summaries

Samenvattingen gemaakt in LaTeX over vercschillende vakken gegeven in de BSc EOR en MSc op Tilburg University.

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions