Definitions → cars always drive on left side Magnetic Field notation: Factors Affecting size of force Magnetic Fl
current (A) length (m)
Magnetic Field: = into page acting on charge carriers moving = strength o
A magnetic field is a Motor
Effect - flemings left hand rule F - BIL sin (O) out of page in a magnetic field:
region surrounding a • B- magnetic flux density B field = mag
magnetic object or Thumb = Thrust (Force) force (N) Magnetic Field Effects: • 1 - length of wire in magnetic field
magnetic
electric current in First Finger = Field 1- another magnetic field • I - current
baittiieent.
field (T)
which another magnetic second finger = current 2- a moving charge (current) • O- Between B field and current.
object experiences a Derivation: circular motion: Magnetic Field lines:
KEY POINT:
magnetic force. F = BIL • North → south
I=♀ Fc- MV² = F-BQV • never cross over wire:
20cm
Magnetic Flux Density: r • Anticlockwise
One Tesla is the magnetic F = B Q L MV² = BQV around wire 5cm
flux density that causes t r S
• current inside length of wire = 20cm
a 7N force to be exerted v-¥ MV = BQ wire produces length of wire in magnetic field = Scm
on every 1m length of r electric field i n questions:
wire carrying 1A of currean F-B QU r= mv inside wire I = length of wire in B field
n a direction that is t B
perpendicular to the field. F-BIL sin (O) Example : circular motion question
↳ in most cases N X = into page B- 0.2Mt
Moving charges in a 0=90' Force is biggest e 5cm Me = 9-11×10-31kg
" I
magnet ic field: sin (901=1 at O-90. Qe: 1.6×10-19C
S
The force on a charged so cancels when travelling outside V= 7×100 ms"
particle moving through a magnetic field, line is straight.
magnetic field is F-BQV If current and field parallel: Find radius of circular path:
where Q is charge of the F- BQV Fc=MV² r= (9.11×10-31) (7×106) = 20cm
⟂
particle, v is the velocity 0=0 → sin (o) (0.2×10-3) (1-6×10-19)
of particle perpendicular so no force. BQV = MI r = BE 20cm > 5cm so radius is too big
to the magnetic field. F-BIL sin (O) , F-O and would go out of magnetic field
so wouldn't travel in circular motion
outside of field.
current (A) length (m)
Magnetic Field: = into page acting on charge carriers moving = strength o
A magnetic field is a Motor
Effect - flemings left hand rule F - BIL sin (O) out of page in a magnetic field:
region surrounding a • B- magnetic flux density B field = mag
magnetic object or Thumb = Thrust (Force) force (N) Magnetic Field Effects: • 1 - length of wire in magnetic field
magnetic
electric current in First Finger = Field 1- another magnetic field • I - current
baittiieent.
field (T)
which another magnetic second finger = current 2- a moving charge (current) • O- Between B field and current.
object experiences a Derivation: circular motion: Magnetic Field lines:
KEY POINT:
magnetic force. F = BIL • North → south
I=♀ Fc- MV² = F-BQV • never cross over wire:
20cm
Magnetic Flux Density: r • Anticlockwise
One Tesla is the magnetic F = B Q L MV² = BQV around wire 5cm
flux density that causes t r S
• current inside length of wire = 20cm
a 7N force to be exerted v-¥ MV = BQ wire produces length of wire in magnetic field = Scm
on every 1m length of r electric field i n questions:
wire carrying 1A of currean F-B QU r= mv inside wire I = length of wire in B field
n a direction that is t B
perpendicular to the field. F-BIL sin (O) Example : circular motion question
↳ in most cases N X = into page B- 0.2Mt
Moving charges in a 0=90' Force is biggest e 5cm Me = 9-11×10-31kg
" I
magnet ic field: sin (901=1 at O-90. Qe: 1.6×10-19C
S
The force on a charged so cancels when travelling outside V= 7×100 ms"
particle moving through a magnetic field, line is straight.
magnetic field is F-BQV If current and field parallel: Find radius of circular path:
where Q is charge of the F- BQV Fc=MV² r= (9.11×10-31) (7×106) = 20cm
⟂
particle, v is the velocity 0=0 → sin (o) (0.2×10-3) (1-6×10-19)
of particle perpendicular so no force. BQV = MI r = BE 20cm > 5cm so radius is too big
to the magnetic field. F-BIL sin (O) , F-O and would go out of magnetic field
so wouldn't travel in circular motion
outside of field.