100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Advanced Calculus Folland Solutions Manual PDF

Rating
-
Sold
-
Pages
72
Uploaded on
20-03-2024
Written in
2023/2024

Complete Answers Solutions Manual PDF for Advanced Calculus by Gerald B Folland. Includes the answers for all of the exercises of the book.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Uploaded on
March 20, 2024
Number of pages
72
Written in
2023/2024
Type
Class notes
Professor(s)
Pepeu palala
Contains
All classes

Subjects

Content preview

Instructor’s Solution Manual for
ADVANCED CALCULUS


Gerald B. Folland

,
,Contents
1 Setting the Stage 1
1.1 Euclidean Spaces and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Subsets of Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Differential Calculus 8
2.1 Differentiability in One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Differentiability in Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Functional Relations and Implicit Functions: A First Look . . . . . . . . . . . . . . . . . . 10
2.6 Higher-Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Extreme Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Vector-Valued Functions and Their Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Implicit Function Theorem and its Applications 19
3.1 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Curves in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Surfaces and Curves in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Transformations and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Functional Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Integral Calculus 25
4.1 Integration on the Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Integration in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Multiple Integrals and Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Change of Variables for Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Functions Defined by Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Improper Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii

, iv Contents

5 Line and Surface Integrals; Vector Analysis 34
5.1 Arc Length and Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Surface Area and Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Some Applications to Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.8 Integrating Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Infinite Series 43
6.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Series with Nonnegative Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Absolute and Conditional Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 More Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Double Series; Products of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Functions Defined by Series and Integrals 49
7.1 Sequences and Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Integrals and Derivatives of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 The Complex Exponential and Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Functions Defined by Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Fourier Series 59
8.1 Periodic Functions and Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Derivatives, Integrals, and Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . 61
8.4 Fourier Series on Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.5 Applications to Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.6 The Infinite-Dimensional Geometry of Fourier Series . . . . . . . . . . . . . . . . . . . . . 65

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
SolutionsWizard Universidad de San Andres
Follow You need to be logged in order to follow users or courses
Sold
506
Member since
7 year
Number of followers
141
Documents
50
Last sold
5 days ago
The #1 Shop for Solutions Manual

Book Solutions Manuals, summaries for the IGCSEs, IB and general Finance / Business notes. I’m not responsible for whatever you might use my documents for, this is intended only for educational purposes.

4.1

75 reviews

5
43
4
14
3
7
2
2
1
9

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions