100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Class notes

Complete exam material of Econometrics 3 (II), Bachelor Econometrics, Vrije Universiteit Amsterdam

Rating
-
Sold
2
Pages
33
Uploaded on
19-03-2024
Written in
2023/2024

Complete summary of the exam material for the course Econometrics 3 (III) in the 3th year of the Bachelor of Econometrics at the Vrije Universiteit Amsterdam. The summary is in English. All lectures are in the summary, with extra information on some more complex topics.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 19, 2024
Number of pages
33
Written in
2023/2024
Type
Class notes
Professor(s)
Siem jan koopman
Contains
All classes

Subjects

Content preview

Econometrics III Overview CHoogteijling



Econometrics III Overview
Contents
1 Multiple equations in regression 3
1.1 Multiple equations in regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Seemingly unrelated regression equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generalized least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Seemingly Unrelated Regressions, same X . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Feasible generalized least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Pooled regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Panel Data Models 6
2.1 Panel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Feasible GLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Between estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Within estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Fixed Effects model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Hausman test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Group-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Two-Way Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Difference-in-Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Vector Autoregressive Models 13
3.1 VAR(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Stationarity and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Mean, variance and autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 VAR(1) Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 One-step ahead forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Multi-step ahead forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Impulse response functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Orthogonal IRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Least squares method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Maximum likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Testing for Granger-causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.5 Bootstrap method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 VAR(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Mean, variance and autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


, page 1 of 33

,Econometrics III Overview CHoogteijling


3.4.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Impulse response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Determine order in VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Likelihood-ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Akaike information criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Non-stationary, Cointegration and Vector Error Correction Models 26
4.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Vector Error Correction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 General VAR to VECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 VAR representation of VECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Johansen Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Trace test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Maximum eigenvalue test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Johansen Estimation Method for VECM . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Prior knowledge 30
5.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Ordinary Least Squares (OLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Gauss-Markov assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Coefficient of determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8 Eigenvalue analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32




, page 2 of 33

,Econometrics III Overview CHoogteijling


1 Multiple equations in regression

1.1 Multiple equations in regressions
We can compose a multiple set of regression equations. Where i = 1, . . . , N , with N as the number of
different variables.

yi = Xi βi + εi

If the variables can be related to each other, we may wish to analyze the multiple set of regression
equations simultaneously, as if they are a part of a system of equations. Otherwise, we can analyze each
regression equation separately and apply OLS.


1.2 Seemingly unrelated regression equations
We have the multiple set of regression equations yi = Xi βi + εi , where the variables i can be related to
each other. The vector εi contains n noise terms.
The noise vectors may show dependence across different equations. When we want to allow for this
dependence, we use a Seemingly Unrelated Regression (SUR).
Here we assume the noise terms to be normally, independent and identically distributed (NID). Where
In is the n × n identity fmatrix and σi2 is the variance (or scale). The variance can be different for a
different equation i. Hence, the Gauss-Markov assumptions apply to each equation i.

εi ∼ NID(0, σi2 In )

We can express all equations in one system, or y = Xβ + ε, where ε ∼ N (0, Σ). The N n × N n matrix Σ
is the variance-covariance matrix for ε.

      
y1 X1 0 ... 0 β1 ε1
 y2   0 X2 ... 0   β2   ε 2 
 ..  =  ..  .  +  . 
      
.. ..
 .   . . . 0   ..   .. 
yN 0 0 . . . XN βN εN
′ ′ ′
 
E(ε1 ε1 ) E(ε1 ε2 ) . . . E(ε1 εN )
 E(ε2 ε′1 ) E(ε2 ε′2 ) . . . E(ε2 ε′N ) 

Σ = E(εε ) = 
 
.. .. .. .. 
 . . . . 
′ ′ ′
E(εN ε1 ) E(εN ε2 ) . . . E(εN εN )

We can assume across equations that E(εi ε′j ) = σij In , for i, j = 1, . . . , N with i ̸= j. This means that we
assume nonzero correlation between corresponding disturbances in the ith and jth equations and zero
correlation between non-corresponding disturbances.
We can also assume homoskedastic disturbances for each equation, then E(ε1 ε′i ) = σi2 In , for i = 1, . . . , N .


1.3 Generalized least squares
Given the SUR y = Xβ + ε, and ε ∼ NID(0, Σ)), where Σ = Ω ⊗ IN is clearly non-diagonal, we should
apply Generalized Least Squares (GLS). The GLS estimator has optimal properties, certainly under
Gauss-Markov (or similar) assumptions.

β̂GLS = (X ′ Σ−1 X)−1 X ′ Σ−1 y




, page 3 of 33

, Econometrics III Overview CHoogteijling


1.4 Seemingly Unrelated Regressions, same X
We consider the system of equations, but now with the same set of explanatory variables Xi = X, for all
equations i = 1, . . . , N .

yi = Xβi + εi

The SUR with same X is defined as follows, where ε ∼ NID(0, Σ), and Σ = Ω ⊗ In .
      
y1 X 0 ... 0 β1 ε1
 y2   0 X . . . 0   β2   ε2 
 ..  =  ..  .  +  . 
      
.. . .
 .  . . . 0   ..   .. 
yN 0 0 ... X βN εN
 
β1
 .. 
y = [IN ⊗ X]  .  + ε
βN
y = [IN ⊗ X]β + ε

Then the GLS estimate is given by the following equation and by applying some Kronecker properties
we simplify the equation.


β̂GLS = ([IN ⊗ X]′ Σ−1 [IN ⊗ X]−1 [IN ⊗ X]′ Σ−1 y
[IN ⊗ X]′ Σ−1 [IN ⊗ X] = [IN ⊗ X]′ [Ω ⊗ In ][IN ⊗ X]

= [IN ⊗ X ][Ω−1 ⊗ In ][IN ⊗ X]

= Ω−1 ⊗ X X
′ ′
β̂GLS = (Ω−1 ⊗ X X)−1 [Ω−1 ⊗ X ]y
′ ′
= (Ω ⊗ (X X)−1 )[Ω−1 ⊗ X ]y
′ ′
= (IN ⊗ (X X)−1 X y



This implies that for a SUR with same Xs, you can obtain the GLS estimate by applying OLS to each
equation. No joint estimation is needed.


1.5 Feasible generalized least squares
Given the least squares estimate β̂LS , we compute the least squares residuals ei . The estimates for the
elements in the variance-covariance matrix Ω are σ̂i2 and σ̂ij , for i, j = 1, . . . , N , with i ̸= j, leading to
estimate Ω̂.


ei = yi − Xi β̂i,LS
e = y − X β̂LS
e′i ei
σ̂i2 =
n−K
e′ ej
σ̂ij = i
n−K


Feasible GLS (FGLS) is the case of GLS where Ω is unknown. In the unfeasible case Ω is assumed to
be known.

, page 4 of 33

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
charhoog Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
11
Member since
2 year
Number of followers
6
Documents
12
Last sold
8 months ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions