100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions for Oscillations and Waves, 2nd Edition Fitzpatrick (All Chapters included)

Rating
4.5
(2)
Sold
4
Pages
140
Grade
A+
Uploaded on
17-03-2024
Written in
2019/2020

Complete Solutions Manual for Oscillations and Waves, 2nd Edition by Richard Fitzpatrick ; ISBN13: 9781138479715. (Full Chapters included Chapter 1 to 11)....Chapter 1. Simple Harmonic Oscillation Chapter 2. Damped and Driven Harmonic Oscillation Chapter 3. Coupled Oscillations Chapter 4. Transverse Standing Waves Chapter 5. Longitudinal Standing Waves Chapter 6. Travelling Waves Chapter 7. Multi-Dimensional Waves Chapter 8. Wave Pulses Chapter 9. Dispersive Waves Chapter 10. Wave Optics Chapter 11. Wave Mechanics

Show more Read less
Institution
General Science
Course
General science










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
General science
Course
General science

Document information

Uploaded on
March 17, 2024
Number of pages
140
Written in
2019/2020
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

Richard Fitzpatrick




Oscillations and Waves:
An Introduction (2nd Edition):
Solutions to Exercises




Complete Chapter Solutions Manual
are included (Ch 1 to 11)




** Immediate Download
** Swift Response
** All Chapters included

, CHAPTER 1

Simple Harmonic Oscillation


1.1 The mass will fly off the platform when the platforms’s maximum downward acceleration
exceeds the acceleration, g, due to gravity. That is, when

ω 2 a = g. (1.1)

Here, ω = 2π f is the platform’s angular frequency of oscillation, f the same frequency in
hertz, and a the amplitude of the oscillation. It follows that
g
a= . (1.2)
4π 2 f 2
However, f = 5 Hz and g = 9.8 m s−1, so a = 0.0099 m.
1.2 The body will fly off the diaphragm when the diaphragm’s downward acceleration exceeds
the acceleration, g, due to gravity. Hence, as the frequency increases, the body will first fly
off the diaphragm when the maximum downward acceleration becomes equal to g: that is,
when
ω 2 a = g. (1.3)
Here, ω = 2π f is the diaphragm’s angular frequency of oscillation, f the same frequency in
hertz, and a the amplitude of the oscillation. It follows that
r
1 g
f = . (1.4)
2π a
However, a = 1 × 10−5 m and g = 9.8 m s−1 , so f = 157.6 Hz.
1.3 Referring to Fig. 1.1, the transverse restoring force is

f x = −2 T sin θ. (1.5)

m
T T
x
θ
l

FIGURE 1.1 Figure for Ex. 1.3
.

1

, 2  Oscillations and Waves: An Introduction (2nd Edition): Solutions to Exercises


However, from trigonometry,
x
.
tan θ = (1.6)
l
Now, assuming that |x| ≪ 1, it follows that tan θ is small. Hence, θ is small, and we can use
the small-angle approximations
sin θ ≃ tan θ ≃ θ. (1.7)
These approximations imply that
x
sin θ ≃ , (1.8)
l
and !
2T
fx ≃ − x. (1.9)
l
The transverse equation of motion of the mass is
..
m x = fx , (1.10)

which reduces to !
..x = − 2 T x. (1.11)
l
Comparing this equation to the standard form of the simple harmonic oscillator equation,
we deduce that the angular frequency of oscillation is
r
2T
ω= . (1.12)
l

1.4 Let x1 and x2 be the extensions of the first and second springs, respectively. The forces
exerted by these springs are f1 = −k1 x1 and f2 = −k2 x2 , respectively. If the springs are
connected in parallel then x = x1 = x2 , where x is the downward displacement of the mass
with respect to its equilibrium point. However, if the springs are connected in series then
x = x1 + x2 . If the springs are connected in parallel then f = f1 + f2 , where f is the net
downward force acting on the mass due to the springs. However, if the springs are connected
in series then f = f1 = f2 . ( f1 equals f2 because of Newton’s third law of motion.) The
generic equation of motion is
..
m x = f + m g. (1.13)

If the springs are connected in parallel then
..
m x = −(k1 + k2 ) x + m g. (1.14)

Let x = m g/(k1 + k2 ) + δx. It follows that
!
..
δx = −
k1 + k2
δx. (1.15)
m

This is the simple harmonic oscillator equation, so the angular frequency of oscillation be-
comes !1/2
k1 + k2
ω= . (1.16)
m

If the springs are connected in series then f = −k1 x1 = −k2 x2 , so that x2 /x1 = k1 /k2 . Also,

Reviews from verified buyers

Showing all 2 reviews
5 days ago

3 days ago

Thank you for your feedback! Glad this document was helpful, we’ll keep sharing more study notes to support your learning. Many Thanks

8 months ago

4 months ago

Thank you for your feedback! Glad this document was helpful, we’ll keep sharing more study notes to support your learning. Many thanks

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mizhouubcca Business Hub
View profile
Follow You need to be logged in order to follow users or courses
Sold
2529
Member since
2 year
Number of followers
360
Documents
1606
Last sold
3 hours ago

4.3

443 reviews

5
284
4
76
3
39
2
14
1
30

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions