100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Introduction to Linear Optimization Solution Manual PDF

Rating
-
Sold
21
Pages
20
Uploaded on
13-03-2024
Written in
2023/2024

Complete Answers Solutions Manual PDF for Introduction to Linear Optimization by Dimitris Bertsimas and John N. Tsitsiklis. Includes the answers for all the exercises of the book.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Uploaded on
March 13, 2024
Number of pages
20
Written in
2023/2024
Type
Class notes
Professor(s)
Luis solari
Contains
All classes

Subjects

Content preview

Solution Manual For:
Introduction to Linear Optimization
by Dimitris Bertsimas & John N. Tsitsiklis

John L. Weatherwax∗


November 22, 2007




Introduction

Acknowledgements

Special thanks to Dave Monet for helping find and correct various typos in these solutions.



Chapter 1 (Introduction)

Exercise 1.1

Since f (·) is convex we have that

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) . (1)

Since f (·) is concave we also have that

f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y) . (2)

Combining these two expressions we have that f must satisfy each with equality or

f (λx + (1 − λ)y) = λf (x) + (1 − λ)f (y) . (3)

This implies that f must be linear and the expression given in the book holds.



1

,Exercise 1.2

Part (a): We are told that fi is convex so we have that

fi (λx + (1 − λ)y) ≤ λfi (x) + (1 − λ)fi (y) , (4)

for every i. For our function f (·) we have that
m
X
f (λx + (1 − λ)y) = fi (λx + (1 − λ)y) (5)
i=1
m
X
≤ λfi (x) + (1 − λ)fi (y) (6)
i=1
Xm m
X
= λ fi (x) + (1 − λ) fi (y) (7)
i=1 i=1
= λf (x) + (1 − λ)f (y) (8)

and thus f (·) is convex.

Part (b): The definition of a piecewise linear convex function fi is that is has a represen-
tation given by
fi (x) = Maxj=1,2,...,m (c′j x + dj ) . (9)
So our f (·) function is
n
X
f (x) = Maxj=1,2,...,m (c′j x + dj ) . (10)
i=1

Now for each of the fi (x) piecewise linear convex functions i ∈ 1, 2, 3, . . . , n we are adding
up in the definition of f (·) we will assume that function fi (x) has mi affine/linear functions
to maximize over. Now select a new set of affine values (c̃j , d˜j ) formed by summing elements
from each of the 1, 2, 3, . . . , n sets of coefficients from the individual fi . Each pair of (c̃j , d˜j )
is obtained by summing one of the (cj , dj ) pairs from each of the n sets. The number of
such coefficients can be determined as follows. We have m1 choices to make when selecting
(cj , dj ) from the first piecewise linear convex function, m2 choices for the second piecewise
linear convex function, and so on giving a total of m1 m2 m3 · · · mn total possible sums each
producing a single pair (c̃j , d˜j ). Thus we can see that f (·) can be written as

f (x) = Maxj=1,2,3,...,Qnl=1 ml c̃′j x + d˜j , (11)

since one of the (c̃j , d˜j ) will produce the global maximum. This shows that f (·) can be
written as a piecewise linear convex function.



Exercise 1.3 (minimizing a linear plus linear convex constraint)

We desire to convert the problem min(c′ x + f (x)) subject to the linear constraint Ax ≥ b,
with f (x) given as in the picture to the standard form for linear programming. The f (·)

, given in the picture can be represented as

 −ξ + 1 ξ<1
f (ξ) = 0 1<ξ<2 (12)
2(ξ − 2) ξ > 2,


but it is better to recognize this f (·) as a piecewise linear convex function given by the
maximum of three individual linear functions as

f (ξ) = max (−ξ + 1, 0, 2ξ − 4) (13)

Defining z ≡ max (−ξ + 1, 0, 2ξ − 4) we see that or original problem of minimizing over the
term f (x) is equivalent to minimizing over z. This in tern is equivalent to requiring that z
be the smallest value that satisfies

z ≥ −ξ + 1 (14)
z ≥ 0 (15)
z ≥ 2ξ − 4 . (16)

With this definition, our original problem is equivalent to

Minimize (c′ x + z) (17)

subject to the following constraints

Ax ≥ b (18)
z ≥ −d′ x + 1 (19)
z ≥ 0 (20)
z ≥ 2d′ x + 4 (21)

where the variables to minimize over are (x, z). Converting to standard form we have the
problem
Minimize(c′ x + z) (22)
subject to

Ax ≥ b (23)

dx+z ≥ 1 (24)
z ≥ 0 (25)

−2d x + z ≥ 4 (26)



Exercise 1.4

Our problem is
Minimize(2x1 + 3|x2 − 10|) (27)
subject to
|x1 + 2| + |x2 | ≤ 5 . (28)

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
SolutionsWizard Universidad de San Andres
Follow You need to be logged in order to follow users or courses
Sold
506
Member since
7 year
Number of followers
141
Documents
50
Last sold
2 days ago
The #1 Shop for Solutions Manual

Book Solutions Manuals, summaries for the IGCSEs, IB and general Finance / Business notes. I’m not responsible for whatever you might use my documents for, this is intended only for educational purposes.

4.1

75 reviews

5
43
4
14
3
7
2
2
1
9

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions