Centre number Candidate number
Surname _________________________________________________________________________
Forename(s) _________________________________________________________________________
Candidate signature _________________________________________________________________________
I declare this is my own work.
2023 AQA AS MATHEMATICS 7356/1 Paper 1 Question Paper & Mark scheme (Merged) June 2023
[VERIFIED]
AS
MATHEMATICS
Paper 1
Thursday 18 May 2023 afternoon Time allowed: 1 hour 30 minutes
Materials For Examiner’s Use
⚫ You must have the AQA Formulae for A‑level Mathematics booklet.
⚫ You should have a graphical or scientific calculator that meets the Question Mark
requirements of the specification. 1
2
Instructions
⚫ Use black ink or black ball-point pen. Pencil should only be used for drawing. 3
⚫ Fill in the boxes at the top of this page. 4
⚫ Answer all questions. 5
⚫ You must answer each question in the space provided for that question.
⚫ If you need extra space for your answer(s), use the lined pages at the end of 6
this book. Write the question number against your answer(s). 7
⚫ Do not write outside the box around each page or on blank pages. 8
⚫ Show all necessary working; otherwise marks for method may be lost. 9
⚫ Do all rough work in this book. Cross through any work that you do not want
10
to be marked.
11
Information 12
⚫ The marks for questions are shown in brackets. 13
⚫ The maximum mark for this paper is 80. 14
Advice 15
⚫ Unless stated otherwise, you may quote formulae, without proof, from the 16
booklet. 17
⚫ You do not necessarily need to use all the space provided. 18
TOTAL
PB/KL/Jun23/E4 7356/1
, 2
Do not write
outside the
Section A box
Answer all questions in the spaces provided.
1 At a point P on a curve, the gradient of the tangent to the curve is 10
State the gradient of the normal to the curve at P
Circle your answer.
[1 mark]
10 0.1 0.1 10
2 3
x
2 Identify the expression below which is equivalent to 5
Circle your answer.
[1 mark]
3 3
8x 125x 125 8
3 3
125 8 8x 125x
(02)
Jun23/7356/1
, 3
Do not write
outside the
20 box
2 6
3 The coefficient of x in the binomial expansion of (1 þ ax) is 3
Find the two possible values of a
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
Turn over
s
(03)
Jun23/7356/1
, 4
Do not write
outside the
2 2 box
4 It is given that 5 cos y 4 sin y ¼ 0
4 (a) Find the possible values of tan y, giving your answers in exact form.
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (b) Hence, or otherwise, solve the equation
2 2
5 cos y 4 sin y ¼ 0
giving all solutions of y to the nearest 0.1L in the interval 0L y 360L
[2 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(04)
Jun23/7356/1