solutions MANUAL FOR
structural
analysis
Principles, Methods
and Modelling
by
Gianluca Ranzi and
Raymond Ian Gilbert
, Table of Contents
Acknowledgements i
2 Statics of structures: Equilibrium and support reactions 1
3 Internal actions of beams and frames 43
4 Statically determinate trusses 93
5 Euler-Bernoulli beam model 167
6 Slope-deflection methods 221
7 Work-energy methods 281
8 The force method 335
9 Moment distribution 431
10 Truss analysis using the stiffness 479
11 Beam analysis using the stiffness method 533
12 Frame analysis using the stiffness method 581
13 Introduction to the finite element method 653
14 Introduction to the structural stability of columns 669
15 Introduction to nonlinear analysis 679
, Chapter 2
Statics of structures:
Equilibrium and support reactions
1
, Chapter 2 – Statics of structures: Equilibrium and support reactions
2.1 Determine the components Fx and Fy parallel (c)
to the x- and y-axes for the forces F shown.
y
y y =290
y
y x x x
F = 30 kN x
70 20 20
35 F = 40 kN F = 50 kN
x
F = 50 kN F = 50 kN
(a) (b) (c)
Fx = F × cos() = 50 × cos (290) = 17.10 kN
_________________________________________ Fy = F × sin() = 50 × sin (290) = – 46.98 kN
y
(a) 17.1 kN
x
y
F = 30 kN
=35
x
46.98 kN
F = 50 kN
Fx = F × cos() = 30 × cos (35 ) = 24.57 kN
Fy = F × sin() = 30 × sin (35) = 17.21 kN
y
F = 30 kN
17.21 kN
x
24.57 kN
(b)
y y
x =200
x
70
F = 40 kN F = 40 kN
Fx = F × cos() = 40 × cos (200) = – 37.59 kN
Fy = F × sin() = 40 × sin (200) = – 13.68 kN
y
37.59 kN
x
13.68 kN
F = 40 kN
3
structural
analysis
Principles, Methods
and Modelling
by
Gianluca Ranzi and
Raymond Ian Gilbert
, Table of Contents
Acknowledgements i
2 Statics of structures: Equilibrium and support reactions 1
3 Internal actions of beams and frames 43
4 Statically determinate trusses 93
5 Euler-Bernoulli beam model 167
6 Slope-deflection methods 221
7 Work-energy methods 281
8 The force method 335
9 Moment distribution 431
10 Truss analysis using the stiffness 479
11 Beam analysis using the stiffness method 533
12 Frame analysis using the stiffness method 581
13 Introduction to the finite element method 653
14 Introduction to the structural stability of columns 669
15 Introduction to nonlinear analysis 679
, Chapter 2
Statics of structures:
Equilibrium and support reactions
1
, Chapter 2 – Statics of structures: Equilibrium and support reactions
2.1 Determine the components Fx and Fy parallel (c)
to the x- and y-axes for the forces F shown.
y
y y =290
y
y x x x
F = 30 kN x
70 20 20
35 F = 40 kN F = 50 kN
x
F = 50 kN F = 50 kN
(a) (b) (c)
Fx = F × cos() = 50 × cos (290) = 17.10 kN
_________________________________________ Fy = F × sin() = 50 × sin (290) = – 46.98 kN
y
(a) 17.1 kN
x
y
F = 30 kN
=35
x
46.98 kN
F = 50 kN
Fx = F × cos() = 30 × cos (35 ) = 24.57 kN
Fy = F × sin() = 30 × sin (35) = 17.21 kN
y
F = 30 kN
17.21 kN
x
24.57 kN
(b)
y y
x =200
x
70
F = 40 kN F = 40 kN
Fx = F × cos() = 40 × cos (200) = – 37.59 kN
Fy = F × sin() = 40 × sin (200) = – 13.68 kN
y
37.59 kN
x
13.68 kN
F = 40 kN
3