Goniometrische formules
sin(−𝐴) = − sin(𝐴) cos(−𝐴) = cos(𝐴)
− sin(𝐴) = sin(𝐴 + 𝜋) − cos(𝐴) = cos(𝐴 + 𝜋)
1 1
sin(𝐴) = cos (𝐴 − 𝜋) cos(𝐴) = sin (𝐴 + 𝜋)
2 2
sin2(𝐴) + cos2(𝐴) = 1 sin(𝐴)
tan(𝐴) =
cos(𝐴)
Je hebt vaak opgaven dat je een cosinus moet herleiden tot een sinus
waarbij je meerdere van de hierboven genoemde vergelijkingen nodig zal
hebben.
Goniometrische vergelijkingen
De oplossing van vergelijkingen zoals sin(𝐴) = 𝐶 en cos(𝐴) = 𝐶
met C= -1, 0, 1 lees je af uit de eenheidscirkel.
De vergelijkingen sin(𝐴) = 𝐶 en cos(𝐴) = 𝐶 met
1 1 1 1 1 1
C=− √3, − √2, − , , √2, √3 los je op door naar de
2 2 2 2 2 2
exacte waarden in de eenheidscirkel te kijken. Daarna gebruik je
sin(𝐴) = 𝐶 geeft:
𝐴 = 𝐵 + 𝑘 ∙ 2𝜋 ∨ 𝐴 = 𝜋 − 𝐵 + 𝑘 ∙ 2𝜋
en cos(𝐴) = 𝐶 geeft:
𝐴 = 𝐵 + 𝑘 ∙ 2𝜋 ∨ 𝐴 = −𝐵 + 𝑘 ∙ 2𝜋
Soms moet je, om een goniometrische vergelijking op te lossen
deze herleiden met behulp van goniometrische formules tot de
vorm sin(𝐴) = sin(𝐵) of cos(𝐴) = cos(𝐵). Daarna gebruik je
de algemene regels voor het oplossen van goniometrische vergelijkingen:
sin(𝐴) = sin(𝐵) geeft 𝐴 = 𝐵 + 𝑘 ∙ 2𝜋 ∨ 𝐴 = 𝜋 − 𝐵 + 𝑘 ∙ 2𝜋
cos(𝐴) = cos(𝐵) geeft 𝐴 = 𝐵 + 𝑘 ∙ 2𝜋 ∨ 𝐴 = −𝐵 + 𝑘 ∙ 2𝜋
Verschil-, som- en verdubbelingsformule
De eerste twee verdubbelingsformules zijn af te leiden uit de somformules en de laatste twee
verdubbelingsformules zijn af te leiden uit de verschilformules. Vandaar dat we bij het PW de som-
en verschilformules gegeven krijgen maar de verdubbelingsformules niet.
, Lijn- en puntsymmetrie
Een bijzonder geval van lijnsymmetrie in symmetrie in de y-as, ofwel de lijn x=0. Dan geldt voor elke
𝑝 dat 𝑓(−𝑝) = 𝑓(𝑝).
Een bijzonder geval van puntsymmetrie is puntsymmetrie in de O. Dan geldt voor elke 𝑝 dat
𝑓(−𝑝) + 𝑓(𝑝) = 0.
De afgeleide van sinus, cosinus en tangens
𝑓(𝑥) = sin(𝑥) 𝑓 ′ (𝑥) = cos(𝑥)
𝑓(𝑥) = cos(𝑥) 𝑓 ′ (𝑥) = −sin(𝑥)
𝑓(𝑥) = sin(𝑎𝑥 + 𝑏) 𝑓 ′ (𝑥) = 𝑎 cos(𝑎𝑥 + 𝑏)
𝑓(𝑥) = cos(𝑎𝑥 + 𝑏) 𝑓 ′ (𝑥) = −𝑎 sin(𝑎𝑥 + 𝑏)
1
𝑓(𝑥) = tan(𝑥) 𝑓 ′ (𝑥) = cos2(𝑥) ∨ 𝑓 ′ (𝑥) = 1 + tan2 (𝑥)
Raaklijnen en toppen
Toppen liggen een halve periode na
elkaar, je hebt namelijk een top en
een dal in één periode zitten
(tenminste bij een sinusoïde).